Cardioprotective effects of galectin-3 inhibition against ischemia/reperfusion injury
Myocardial ischemia/reperfusion (IR) injury is caused by the restoration of the coronary blood flow following an ischemic episode. Accumulating evidence suggests that galectin-3, a β-galactoside-binding lectin, acts as a biomarker in heart disease. However, it remains unclear whether manipulating ga...
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2019-11, Vol.863, p.172701-172701, Article 172701 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myocardial ischemia/reperfusion (IR) injury is caused by the restoration of the coronary blood flow following an ischemic episode. Accumulating evidence suggests that galectin-3, a β-galactoside-binding lectin, acts as a biomarker in heart disease. However, it remains unclear whether manipulating galectin-3 affects the susceptibility of the heart to IR injury. In this study, RNA sequencing (RNA-seq) analysis identified that Lgals3 (galecin-3) plays an indispensable role in IR-induced cardiac damage. Immunostaining and immunoblot assays confirmed that the expression of galectin-3 was markedly increased in myocardial IR injury both in vivo and in vitro. Echocardiographic analysis showed that cardiac dysfunction in experimental IR injury was significantly attenuated by galectin-3 inhibitors including pectin (1%, i.p.) from citrus and binding peptide G3-C12 (5.0 mg/kg, i.p.). Galectin-3 inhibitor-treated mice exhibited smaller infarct sizes and decreased tissue injury. Furthermore, TUNEL staining showed that galectin-3 inhibition suppressed IR-mediated cardiomyocyte apoptosis. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) levels were well-preserved and IR-induced changes of mitochondrial cyto c, cytosol cyto c, caspase-9, caspase-3, Bcl-2 and Bax in the galectin-3 inhibitor-treated groups were observed. Our findings indicate that the pathological upregulation of galectin-3 contributes to IR-induced cardiac dysfunction and that galectin-3 inhibition ameliorates myocardial injury, highlighting its therapeutic potential. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2019.172701 |