ilastik: interactive machine learning for (bio)image analysis

We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2019-12, Vol.16 (12), p.1226-1232
Hauptverfasser: Berg, Stuart, Kutra, Dominik, Kroeger, Thorben, Straehle, Christoph N., Kausler, Bernhard X., Haubold, Carsten, Schiegg, Martin, Ales, Janez, Beier, Thorsten, Rudy, Markus, Eren, Kemal, Cervantes, Jaime I, Xu, Buote, Beuttenmueller, Fynn, Wolny, Adrian, Zhang, Chong, Koethe, Ullrich, Hamprecht, Fred A., Kreshuk, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance. ilastik is an user-friendly interactive tool for machine-learning-based image segmentation, object classification, counting and tracking.
ISSN:1548-7091
1548-7105
DOI:10.1038/s41592-019-0582-9