Tofacitinib Reprograms Human Monocytes of IBD Patients and Healthy Controls Toward a More Regulatory Phenotype

Abstract Background The inhibition of Janus kinases (JAKs) and subsequent signal transducers and activators of transcription (STATs) by tofacitinib represents a new therapeutic strategy in inflammatory bowel diseases (IBD) as clinical trials have led to approval of tofacitinib for ulcerative colitis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammatory bowel diseases 2020-02, Vol.26 (3), p.391-406
Hauptverfasser: Cordes, Friederike, Lenker, Eva, Spille, Lea J, Weinhage, Toni, Bettenworth, Dominik, Kessel, Christoph, Schmidt, Hartmut H, Foell, Dirk, Varga, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background The inhibition of Janus kinases (JAKs) and subsequent signal transducers and activators of transcription (STATs) by tofacitinib represents a new therapeutic strategy in inflammatory bowel diseases (IBD) as clinical trials have led to approval of tofacitinib for ulcerative colitis (UC) and hint at a possible efficacy for Crohn`s disease (CD). However, the impact of tofacitinib on cellular response of monocytes, which are key players in inflammatory responses, has not been investigated so far. We aimed to analyze JAK/STAT-inhibition by tofacitinib in monocytes of IBD patients and healthy controls. Methods Primary monocytes of IBD patients with active disease and healthy controls (n = 18) were analyzed for cytokine expression and phenotype after granulocyte macrophage colony-stimulating factor (GM-CSF)/interferon (IFN)γ-stimulation and tofacitinib pretreatment (1–1000 nM) and capacity to induce Foxp3+-regulatory T cells (Tregs) in cocultures. In total, 20 UC patients and 21 CD patients were included. Additionally, dose-dependent inhibition of JAK/STAT-phosphorylation was analyzed in controls. Results Pro-inflammatory costimulation with GM-CSF/IFNγ resulted in significant tumor necrosis factor (TNFα) and interleukin (IL)-6 increase, whereas IL-10 expression decreased in monocytes. Tofacitinib modulated the responses of activated monocytes toward a regulatory phenotype through reduced TNFα and IL-6 secretion and enhanced Treg induction in cocultures. However, in monocytes from active IBD patients, higher tofacitinib dosages were needed for blockade of pro-inflammatory cytokines. Tofacitinib induced stronger regulatory phenotypes in monocytes of UC patients, including more effective inhibition of pro-inflammatory pathways and better restoration of anti-inflammatory mechanisms as compared with CD-derived monocytes. Conclusion Tofacitinib dose-dependently reprograms monocytes toward a more regulatory cell type. This beneficial effect possibly results from selective JAK/STAT-blockade by adequate tofacitinib dosage with inhibition of pro-inflammatory responses and permission of a balance-shift toward regulatory pathways. Tofacitinib reprograms monocytes of IBD patients and healthy individuals toward a more regulatory cell type by selective JAK/STAT-blockade with inhibition of inflammatory responses and permission of regulatory pathways. Tofacitinib induces stronger regulatory phenotypes in UC compared with CD-derived monocytes.
ISSN:1078-0998
1536-4844
DOI:10.1093/ibd/izz213