Functional Expression of GFP-Fused Class I Lanthipeptides in Escherichia coli

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides, with several having antimicrobial activity. The biosynthetic machinery responsible for modification of the class I lanthipeptide nisin provides a means for modification of a diverse range of lanthipeptides. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2019-10, Vol.8 (10), p.2220-2227
Hauptverfasser: Van Staden, Anton Du Preez, Faure, Lindsay M, Vermeulen, Ross R, Dicks, Leon M. T, Smith, Carine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lanthipeptides are ribosomally synthesized and post-translationally modified peptides, with several having antimicrobial activity. The biosynthetic machinery responsible for modification of the class I lanthipeptide nisin provides a means for modification of a diverse range of lanthipeptides. However, literature regarding expression of class I lanthipeptides in a malleable Gram-negative host such as Escherichia coli is limited. Here, we coexpressed precursor class I lanthipeptides fused to green fluorescent protein (GFP) along with the dehydratase and cyclase from the nisin operon. Fusion to GFP did not interfere with post-translational modifications as antimicrobially active nisin could be proteolytically liberated from the expressed GFP fusion. Additionally, we used this system to express two other class I lanthipeptides precursors fused to GFP (Pep5 and epilancin 15X), although only Pep5 exhibited consistent antimicrobial activity. This is the first report of a GFP-based fusion expression system for the expression of class I lanthipeptides in E. coli. The GFP-based fusion expression system is a robust system with the advantage of directly visualizing expression and purification through GFP fluorescence.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.9b00167