Hierarchical Micro‐Mesoporous Carbon‐Framework‐Based Hybrid Nanofibres for High‐Density Capacitive Energy Storage

Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-11, Vol.58 (48), p.17465-17473
Hauptverfasser: Cheng, Hengyang, Meng, Jinku, Wu, Guan, Chen, Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g−1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm−3), high specific capacitance (472 F cm−3) and stably deformable energy‐supply. Flexible storage: A microdroplet assembly and microfluidic‐blow‐spinning method gives micro‐mesoporous carbon‐framework fibres for high‐density capacitive energy storage. The supercapacitors display high volumetric energy density, specific capacitance, are deformable and can be self‐powered to light‐up displays.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201911023