Acceptance and verification of the Halcyon‐Eclipse linear accelerator‐treatment planning system without 3D water scanning system

We tested whether an ionization chamber array (ICA) and a one‐dimensional water scanner (1DS) could be used instead of a three‐dimensional water scanning system (3DWS) for acceptance testing and commissioning verification of the Varian Halcyon–Eclipse Treatment Planning System (TPS). The Halcyon lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied clinical medical physics 2019-10, Vol.20 (10), p.111-117
Hauptverfasser: Gao, Song, Netherton, Tucker, Chetvertkov, Mikhail A., Li, Yuting, Court, Laurence E., Simon, William E., Shi, Jie, Balter, Peter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We tested whether an ionization chamber array (ICA) and a one‐dimensional water scanner (1DS) could be used instead of a three‐dimensional water scanning system (3DWS) for acceptance testing and commissioning verification of the Varian Halcyon–Eclipse Treatment Planning System (TPS). The Halcyon linear accelerator has a single 6‐MV flattening‐filter‐free beam and a nonadjustable beam model for the TPS. Beam data were measured with a 1DS, ICA, ionization chambers, and electrometer. Acceptance testing and commissioning were done simultaneously by comparing the measured data with TPS‐calculated percent‐depth‐dose (PDD) and profiles. The ICA was used to measure profiles of various field sizes (10‐, 20‐, and 28 cm2) at depths of dmax (1.3 cm), 5‐, 10‐, and 20 cm. The 1DS was used for output factors (OFs) and PDDs. OFs were measured with 1DS for various fields (2–28 cm2) at a source‐to‐surface distance of 90 cm. All measured data were compared with TPS‐calculations. Profiles, off‐axis ratios (OAR), PDDs and OFs were also measured with a 3DWS as a secondary check. Profiles between the ICA and TPS (ICA and 3DWS) at various depths across the fields indicated that the maximum discrepancies in high‐dose and low‐dose tail were within 2% and 3%, respectively, and the maximum distance‐to‐agreement in the penumbra region was
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.12719