Treated produced water in irrigation: Effects on soil fauna and aquatic organisms
Produced water (PW) is a mixture of formation water and injected water from oil and gas reservoirs, which contain a complex composition of dissolved and particulate organic and inorganic chemicals. High quantities of PW are extracted with the oil, which can be discharged into the environment, re-inj...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-02, Vol.240, p.124791-124791, Article 124791 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Produced water (PW) is a mixture of formation water and injected water from oil and gas reservoirs, which contain a complex composition of dissolved and particulate organic and inorganic chemicals. High quantities of PW are extracted with the oil, which can be discharged into the environment, re-injected into the wells or treated for reuse. The present study aimed to evaluate the soil ecotoxicity under an irrigation system using treated PW (water-oil separation, sand filter, activated charcoal filter, reverse osmosis) for sunflower production, predicting conditions for PW reuse in the semi-arid region of Brazil. The experiment was conducted in a greenhouse using natural soil in vessels. Water from public water supply was used as control. Soil samples from two production cycles of sunflowers were assessed using ecotoxicity tests with soil invertebrate's species representing macro and mesofaunal groups: Eisenia andrei (earthworms), Folsomia candida (collembolans) and Enchytraeus crypticus (enchytraeids). Leachates samples were evaluated with aquatic ecotoxicity tests to assess the soil retention function. Results showed impact of irrigation with PW in all treatments except reverse osmosis. Significant negative correlations were found among reproduction of soil invertebrates, high Na+ concentrations and electrical conductivity. The effects of other contaminants not analyses should not be discarded. It is important to highlight that salinity is not usually included in target values of soil quality. This study reinforces the importance of ecotoxicity tests in predictive and retrospective risk assessment, joining effects of contaminant mixtures or even that contaminants not considered in chemical scope of analysis or legislation.
[Display omitted]
•Treated PW was studied for use in sunflower production in the semi-arid region of Brazil.•Ecotoxicity of soil and leachates after irrigation with treated PW was evaluated.•All treatments except reverse osmosis compromised soil functioning.•Negative effects were highly correlated to Na content and electrical conductivity. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2019.124791 |