Crystal structure of the flagellar cap protein FliD from Bdellovibrio bacteriovorus
Bdellovibrio bacteriovorus is a predator bacterial species of the Deltaproteobacteria class that requires flagellum-mediated motility to initiate the parasitization of other gram-negative bacteria. The flagellum is capped by FliD, which polymerizes flagellin into a flagellar filament. FliD has been...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2019-11, Vol.519 (3), p.652-658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bdellovibrio bacteriovorus is a predator bacterial species of the Deltaproteobacteria class that requires flagellum-mediated motility to initiate the parasitization of other gram-negative bacteria. The flagellum is capped by FliD, which polymerizes flagellin into a flagellar filament. FliD has been reported to function as a species-specific oligomer, such as a tetramer, a pentamer, or a hexamer, in members of the Gammaproteobacteria class. However, the oligomeric state and structural features of FliD from bacterial species outside the Gammaproteobacteria class are unknown. Based on structural and biochemical analyses, we report here that B. bacteriovorus FliD (bbFliD) forms a tetramer. bbFliD tetramerizes in a circular head-to-tail arrangement by inserting the D2 domain of one subunit into the concave surface of the second subunit generated between the D2 and D3 domains as observed in Serratia marcescens FliD. However, bbFliD adopts a more compact and flat oligomeric structure, which exhibits a more extended tetramerization interface flanked by two additional surfaces due to different intersubunit and interdomain organizations as well as an elongated loop. In conclusion, FliD from B. bacteriovorus, which belongs to the Deltaproteobacteria class, also produces a tetramer similar to FliD from Gammaproteobacterial species but adopts a unique species-specific oligomeric structure.
•The crystal structure of Bdellovibrio bacteriovorus FliD (bbFliD) was determined.•bbFliD contains the D2 and D3 domains, which adopt β-cup structures.•bbFliD forms a tetramer, similar to Serratia marcescens FliD.•However, bbFliD exhibits a smaller tetramer size and a larger binding interface. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2019.09.024 |