Rational design of some substituted phenyl azanediyl (bis) methylene phosphonic acid derivatives as potential anticancer agents and imaging probes: Computational inputs, chemical synthesis, radiolabeling, biodistribution and gamma scintigraphy
[Display omitted] Bisphosphonates are widely used for treatment of osteoporosis. Recently, they have been reported to be effective anticancer agents. In this work, we designed some substituted phenyl (azanediyl) bis (methylene phosphonic acid) to be tested for their anticancer effect. Both molecular...
Gespeichert in:
Veröffentlicht in: | Bioorganic chemistry 2019-11, Vol.92, p.103282-103282, Article 103282 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Bisphosphonates are widely used for treatment of osteoporosis. Recently, they have been reported to be effective anticancer agents. In this work, we designed some substituted phenyl (azanediyl) bis (methylene phosphonic acid) to be tested for their anticancer effect. Both molecular docking and dynamics studies were used to select the top ranked highly scored compounds. The selected hits showed potential in vitro anticancer effect against some cell lines. Biodistribution pattern and gamma scintigraphy were conducted to the most effective derivative (BMBP) after radiolabeling with 99mTc. Results of biodistribution and scintigraphic imaging of 99mTc-BMBP in tumor bearing mice showed a notable tumor affinity, and confirmed the targeting affinity of BMBP to the tumor tissues. As a conclusion, BMBP could act as potential anticancer agent and imaging probe. |
---|---|
ISSN: | 0045-2068 1090-2120 |
DOI: | 10.1016/j.bioorg.2019.103282 |