Building a Body Shape Morphospace of Teleostean Fishes

We present a dataset that quantifies body shape in three dimensions across the teleost phylogeny. Built by a team of researchers measuring easy-to-identify, functionally relevant traits on specimens at the Smithsonian National Museum of Natural History it contains data on 16,609 specimens from 6144...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2019-09, Vol.59 (3), p.716-730
Hauptverfasser: Price, S A, Friedman, S T, Corn, K A, Martinez, C M, Larouche, O, Wainwright, P C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a dataset that quantifies body shape in three dimensions across the teleost phylogeny. Built by a team of researchers measuring easy-to-identify, functionally relevant traits on specimens at the Smithsonian National Museum of Natural History it contains data on 16,609 specimens from 6144 species across 394 families. Using phylogenetic comparative methods to analyze the dataset we describe the teleostean body shape morphospace and identify families with extraordinary rates of morphological evolution. Using log shape ratios, our preferred method of body-size correction, revealed that fish width is the primary axis of morphological evolution across teleosts, describing a continuum from narrow-bodied laterally compressed flatfishes to wide-bodied dorsoventrally flattened anglerfishes. Elongation is the secondary axis of morphological variation and occurs within the more narrow-bodied forms. This result highlights the importance of collecting shape on three dimensions when working across teleosts. Our analyses also uncovered the fastest rates of shape evolution within a clade formed by notothenioids and scorpaeniforms, which primarily thrive in cold waters and/or have benthic habits, along with freshwater elephantfishes, which as their name suggests, have a novel head and body shape. This unprecedented dataset of teleostean body shapes will enable the investigation of the factors that regulate shape diversification. Biomechanical principles, which relate body shape to performance and ecology, are one promising avenue for future research.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icz115