A novel approach for detection of brucella using a real-time recombinase polymerase amplification assay
Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase ampli...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular probes 2019-12, Vol.48, p.101451-101451, Article 101451 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.
•Develop a real-time RPA assay for detection of Brucella.•The RPA assay could distinguish 18 representative Brucella strains, and four Brucella vaccine strains from non-Brucella strains.•The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis.•When compared with real-time PCR, the sensitivity of the assay was 94%. |
---|---|
ISSN: | 0890-8508 1096-1194 |
DOI: | 10.1016/j.mcp.2019.101451 |