Changes in cardiac Aquaporin expression during aortic valve replacement surgery with cardiopulmonary bypass

Abstract OBJECTIVES Cardiopulmonary bypass (CPB) use is an essential strategy for many cardiovascular surgeries. However, its use and duration have been associated with a higher rate of postoperative complications, such as low cardiac output syndrome due to myocardial oedema and dysfunction. Though...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of cardio-thoracic surgery 2020-03, Vol.57 (3), p.556-564
Hauptverfasser: Politi, María Teresa, Ochoa, Federico, Netti, Vanina, Ferreyra, Raúl, Bortman, Guillermo, Sanjuan, Norberto, Morales, Celina, Piazza, Antonio, Capurro, Claudia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract OBJECTIVES Cardiopulmonary bypass (CPB) use is an essential strategy for many cardiovascular surgeries. However, its use and duration have been associated with a higher rate of postoperative complications, such as low cardiac output syndrome due to myocardial oedema and dysfunction. Though Aquaporin water channels have been implicated in myocardial water balance, their specific role in this clinical scenario has not been established. METHODS In a consecutive study of 17 patients with severe aortic stenosis undergoing aortic valve replacement surgery, 2 myocardial biopsies of the left ventricle were taken: 1 before and 1 after CPB use. Sociodemographic, clinical and laboratory data were collected. Western blot and immunohistochemistry studies were performed. RESULTS After CPB use, there was a mean increase of ∼62% in Aquaporin 1 protein levels (P = 0.001) and a mean reduction of ∼38% in Aquaporin 4 protein levels (P = 0.030). In immunohistochemistry assays, Aquaporin 1 was found lining small blood vessels, while Aquaporin 4 formed a circular label in cardiomyocytes. There were no changes in the localization of either protein following CPB use. During the observed on-pump time interval, there was a 1.7%/min mean increase in Aquaporin 1 (P = 0.021) and a 2.5%/min mean decrease in Aquaporin 4 (P = 0.018). Myocardial interstitial oedema increased by 42% (95% confidence interval 31–54%) after CPB use. Patients who developed low cardiac output syndrome were in the upper half of the median percentage change of Aquaporin expression. CONCLUSION Time-dependent changes in cardiac Aquaporin expression may be associated with myocardial oedema and dysfunction related to CPB use.
ISSN:1010-7940
1873-734X
DOI:10.1093/ejcts/ezz249