Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia
[Display omitted] For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2019-10, Vol.97, p.321-332 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | |
container_start_page | 321 |
container_title | Acta biomaterialia |
container_volume | 97 |
creator | Yang, Yang Lei, Dong Zou, Huanxue Huang, Shixing Yang, Qi Li, Sen Qing, Feng-Ling Ye, Xiaofeng You, Zhengwei Zhao, Qiang |
description | [Display omitted]
For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter |
doi_str_mv | 10.1016/j.actbio.2019.06.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290954224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119304593</els_id><sourcerecordid>2290954224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f0832349109aea3fdca09a36835793b14e32b5863808b996db8e8b3bc24792e63</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVJadK0_yAUQzbd2NXD1mNTCCFtCoFu2rXQY5zoIj8q2RecX1_d3jSLLLKaEfrmSHMOQhcENwQT_mXXGLfYMDUUE9Vg3mAm3qAzIoWsRcflSelFS2uBOTlF73PeYcwkofIdOmWkowzT7gxtt5tNwVcQwS1pyvM6VsnMZthcGOs4GQ--yoOJsfbBDLBAqjw4iHGNJoXHcrs32R0O1X0y_ZIr6PuiFfYQtyqMD8GGpdQlFJHqYZshzdHkYD6gt72JGT4-1XP0-9vNr-vb-u7n9x_XV3e1a6lY6h5LRlmrCFYGDOu9M6VjXLJOKGZJC4zaTnImsbRKcW8lSMuso61QFDg7R5-PunOa_qyQFz2EfFjAjDCtWVOqsOpaStuCXr5Ad9OaxvI7TYtlHeaCiUK1R8oVv3KCXs-pLJc2TbA-RKN3-hiNPkSjMdf439inJ_HVDuCfh_5nUYCvRwCKG_sASWcXYHTgQyqGaj-F11_4C-3Lo0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315506737</pqid></control><display><type>article</type><title>Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Yang ; Lei, Dong ; Zou, Huanxue ; Huang, Shixing ; Yang, Qi ; Li, Sen ; Qing, Feng-Ling ; Ye, Xiaofeng ; You, Zhengwei ; Zhao, Qiang</creator><creatorcontrib>Yang, Yang ; Lei, Dong ; Zou, Huanxue ; Huang, Shixing ; Yang, Qi ; Li, Sen ; Qing, Feng-Ling ; Ye, Xiaofeng ; You, Zhengwei ; Zhao, Qiang</creatorcontrib><description>[Display omitted]
For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter <6 mm) vascular grafts. However, autologous grafts are not always available when the substitute vascular grafts are severely diseased. In our previous work, hybrid small-diameter vascular grafts were successfully fabricated by combining electrospun polycaprolactone (PCL) and decellularized rat aorta (DRA). However, histological assessments of these grafts revealed the development of intimal hyperplasia, indicating potential negative impacts on the long-term patency of these grafts. To address this challenge, PCL nanofibers blended with rapamycin (RM) were electrospun outside the decellularized vascular graft to fabricate a RM-loaded hybrid tissue-engineered vascular graft (RM-HTEV), endowing the graft with a drug delivery function to prevent intimal hyperplasia. RM-HTEV possessed superior mechanical properties compared to DRA and exhibited a sustained drug release profile. To evaluate the applicability of RM-HTEV in vivo, abdominal aorta transplantation was performed on rats. Doppler sonography showed that the grafts were functional for up to 8 weeks in vivo. Moreover, histological analysis of explanted grafts 12 weeks postimplantation demonstrated that RM-HTEV significantly decreased neo-intimal hyperplasia compared with HTEV, without impairing reendothelialization and M2 macrophage polarization. Overall, RM-HTEV represents a promising strategy for developing small-diameter vascular grafts with great clinical translational potential.
In this study, a new type of rapamycin-loaded hybrid tissue-engineered vascular graft (RM-HTEV) was fabricated using electrospinning technology. The unique hybrid bi-layer structure endowed the RM-HTEV with multi-functionality: the exterior rapamycin-loaded electrospun PCL nanofibrous layer enhanced the mechanical properties of the graft and possessed drug releasing property; the interior decellularized aorta layer with porous structure could facilitate cell proliferation and migration. In in vivo implantation experiment, RM-HTEV exhibited satisfying long-term patency rate and significantly inhibited intimal hyperplasia without impairing re-endothelialization and M2 macrophage polarization. This strategy is expected to be a promising strategy for developing bioactive small-diameter vascular grafts with great clinical translational potential.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.06.037</identifier><identifier>PMID: 31523025</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aorta ; Autografts ; Cardiovascular disease ; Coronary artery ; Coronary artery disease ; Coronary vessels ; Drug delivery ; Drug delivery systems ; Electrospin ; Electrospinning ; Grafting ; Grafts ; Heart diseases ; Hyperplasia ; Intimal hyperplasia ; Macrophages ; Mechanical properties ; Medical treatment ; Nanofibers ; Polycaprolactone ; Rapamycin ; Renal artery ; Stenosis ; Stents ; Tissue engineering ; Transplantation ; Vascular diseases ; Vascular graft</subject><ispartof>Acta biomaterialia, 2019-10, Vol.97, p.321-332</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f0832349109aea3fdca09a36835793b14e32b5863808b996db8e8b3bc24792e63</citedby><cites>FETCH-LOGICAL-c427t-f0832349109aea3fdca09a36835793b14e32b5863808b996db8e8b3bc24792e63</cites><orcidid>0000-0003-1038-1321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2019.06.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31523025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><creatorcontrib>Zou, Huanxue</creatorcontrib><creatorcontrib>Huang, Shixing</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Sen</creatorcontrib><creatorcontrib>Qing, Feng-Ling</creatorcontrib><creatorcontrib>Ye, Xiaofeng</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><title>Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter <6 mm) vascular grafts. However, autologous grafts are not always available when the substitute vascular grafts are severely diseased. In our previous work, hybrid small-diameter vascular grafts were successfully fabricated by combining electrospun polycaprolactone (PCL) and decellularized rat aorta (DRA). However, histological assessments of these grafts revealed the development of intimal hyperplasia, indicating potential negative impacts on the long-term patency of these grafts. To address this challenge, PCL nanofibers blended with rapamycin (RM) were electrospun outside the decellularized vascular graft to fabricate a RM-loaded hybrid tissue-engineered vascular graft (RM-HTEV), endowing the graft with a drug delivery function to prevent intimal hyperplasia. RM-HTEV possessed superior mechanical properties compared to DRA and exhibited a sustained drug release profile. To evaluate the applicability of RM-HTEV in vivo, abdominal aorta transplantation was performed on rats. Doppler sonography showed that the grafts were functional for up to 8 weeks in vivo. Moreover, histological analysis of explanted grafts 12 weeks postimplantation demonstrated that RM-HTEV significantly decreased neo-intimal hyperplasia compared with HTEV, without impairing reendothelialization and M2 macrophage polarization. Overall, RM-HTEV represents a promising strategy for developing small-diameter vascular grafts with great clinical translational potential.
In this study, a new type of rapamycin-loaded hybrid tissue-engineered vascular graft (RM-HTEV) was fabricated using electrospinning technology. The unique hybrid bi-layer structure endowed the RM-HTEV with multi-functionality: the exterior rapamycin-loaded electrospun PCL nanofibrous layer enhanced the mechanical properties of the graft and possessed drug releasing property; the interior decellularized aorta layer with porous structure could facilitate cell proliferation and migration. In in vivo implantation experiment, RM-HTEV exhibited satisfying long-term patency rate and significantly inhibited intimal hyperplasia without impairing re-endothelialization and M2 macrophage polarization. This strategy is expected to be a promising strategy for developing bioactive small-diameter vascular grafts with great clinical translational potential.</description><subject>Aorta</subject><subject>Autografts</subject><subject>Cardiovascular disease</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Electrospin</subject><subject>Electrospinning</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Heart diseases</subject><subject>Hyperplasia</subject><subject>Intimal hyperplasia</subject><subject>Macrophages</subject><subject>Mechanical properties</subject><subject>Medical treatment</subject><subject>Nanofibers</subject><subject>Polycaprolactone</subject><subject>Rapamycin</subject><subject>Renal artery</subject><subject>Stenosis</subject><subject>Stents</subject><subject>Tissue engineering</subject><subject>Transplantation</subject><subject>Vascular diseases</subject><subject>Vascular graft</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3TAQhUVJadK0_yAUQzbd2NXD1mNTCCFtCoFu2rXQY5zoIj8q2RecX1_d3jSLLLKaEfrmSHMOQhcENwQT_mXXGLfYMDUUE9Vg3mAm3qAzIoWsRcflSelFS2uBOTlF73PeYcwkofIdOmWkowzT7gxtt5tNwVcQwS1pyvM6VsnMZthcGOs4GQ--yoOJsfbBDLBAqjw4iHGNJoXHcrs32R0O1X0y_ZIr6PuiFfYQtyqMD8GGpdQlFJHqYZshzdHkYD6gt72JGT4-1XP0-9vNr-vb-u7n9x_XV3e1a6lY6h5LRlmrCFYGDOu9M6VjXLJOKGZJC4zaTnImsbRKcW8lSMuso61QFDg7R5-PunOa_qyQFz2EfFjAjDCtWVOqsOpaStuCXr5Ad9OaxvI7TYtlHeaCiUK1R8oVv3KCXs-pLJc2TbA-RKN3-hiNPkSjMdf439inJ_HVDuCfh_5nUYCvRwCKG_sASWcXYHTgQyqGaj-F11_4C-3Lo0g</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yang, Yang</creator><creator>Lei, Dong</creator><creator>Zou, Huanxue</creator><creator>Huang, Shixing</creator><creator>Yang, Qi</creator><creator>Li, Sen</creator><creator>Qing, Feng-Ling</creator><creator>Ye, Xiaofeng</creator><creator>You, Zhengwei</creator><creator>Zhao, Qiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid></search><sort><creationdate>20191001</creationdate><title>Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia</title><author>Yang, Yang ; Lei, Dong ; Zou, Huanxue ; Huang, Shixing ; Yang, Qi ; Li, Sen ; Qing, Feng-Ling ; Ye, Xiaofeng ; You, Zhengwei ; Zhao, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f0832349109aea3fdca09a36835793b14e32b5863808b996db8e8b3bc24792e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aorta</topic><topic>Autografts</topic><topic>Cardiovascular disease</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Electrospin</topic><topic>Electrospinning</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Heart diseases</topic><topic>Hyperplasia</topic><topic>Intimal hyperplasia</topic><topic>Macrophages</topic><topic>Mechanical properties</topic><topic>Medical treatment</topic><topic>Nanofibers</topic><topic>Polycaprolactone</topic><topic>Rapamycin</topic><topic>Renal artery</topic><topic>Stenosis</topic><topic>Stents</topic><topic>Tissue engineering</topic><topic>Transplantation</topic><topic>Vascular diseases</topic><topic>Vascular graft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Lei, Dong</creatorcontrib><creatorcontrib>Zou, Huanxue</creatorcontrib><creatorcontrib>Huang, Shixing</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Li, Sen</creatorcontrib><creatorcontrib>Qing, Feng-Ling</creatorcontrib><creatorcontrib>Ye, Xiaofeng</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Lei, Dong</au><au>Zou, Huanxue</au><au>Huang, Shixing</au><au>Yang, Qi</au><au>Li, Sen</au><au>Qing, Feng-Ling</au><au>Ye, Xiaofeng</au><au>You, Zhengwei</au><au>Zhao, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>97</volume><spage>321</spage><epage>332</epage><pages>321-332</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter <6 mm) vascular grafts. However, autologous grafts are not always available when the substitute vascular grafts are severely diseased. In our previous work, hybrid small-diameter vascular grafts were successfully fabricated by combining electrospun polycaprolactone (PCL) and decellularized rat aorta (DRA). However, histological assessments of these grafts revealed the development of intimal hyperplasia, indicating potential negative impacts on the long-term patency of these grafts. To address this challenge, PCL nanofibers blended with rapamycin (RM) were electrospun outside the decellularized vascular graft to fabricate a RM-loaded hybrid tissue-engineered vascular graft (RM-HTEV), endowing the graft with a drug delivery function to prevent intimal hyperplasia. RM-HTEV possessed superior mechanical properties compared to DRA and exhibited a sustained drug release profile. To evaluate the applicability of RM-HTEV in vivo, abdominal aorta transplantation was performed on rats. Doppler sonography showed that the grafts were functional for up to 8 weeks in vivo. Moreover, histological analysis of explanted grafts 12 weeks postimplantation demonstrated that RM-HTEV significantly decreased neo-intimal hyperplasia compared with HTEV, without impairing reendothelialization and M2 macrophage polarization. Overall, RM-HTEV represents a promising strategy for developing small-diameter vascular grafts with great clinical translational potential.
In this study, a new type of rapamycin-loaded hybrid tissue-engineered vascular graft (RM-HTEV) was fabricated using electrospinning technology. The unique hybrid bi-layer structure endowed the RM-HTEV with multi-functionality: the exterior rapamycin-loaded electrospun PCL nanofibrous layer enhanced the mechanical properties of the graft and possessed drug releasing property; the interior decellularized aorta layer with porous structure could facilitate cell proliferation and migration. In in vivo implantation experiment, RM-HTEV exhibited satisfying long-term patency rate and significantly inhibited intimal hyperplasia without impairing re-endothelialization and M2 macrophage polarization. This strategy is expected to be a promising strategy for developing bioactive small-diameter vascular grafts with great clinical translational potential.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31523025</pmid><doi>10.1016/j.actbio.2019.06.037</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2019-10, Vol.97, p.321-332 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2290954224 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aorta Autografts Cardiovascular disease Coronary artery Coronary artery disease Coronary vessels Drug delivery Drug delivery systems Electrospin Electrospinning Grafting Grafts Heart diseases Hyperplasia Intimal hyperplasia Macrophages Mechanical properties Medical treatment Nanofibers Polycaprolactone Rapamycin Renal artery Stenosis Stents Tissue engineering Transplantation Vascular diseases Vascular graft |
title | Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20electrospun%20rapamycin-loaded%20small-diameter%20decellularized%20vascular%20grafts%20effectively%20inhibit%20intimal%20hyperplasia&rft.jtitle=Acta%20biomaterialia&rft.au=Yang,%20Yang&rft.date=2019-10-01&rft.volume=97&rft.spage=321&rft.epage=332&rft.pages=321-332&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.06.037&rft_dat=%3Cproquest_cross%3E2290954224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315506737&rft_id=info:pmid/31523025&rft_els_id=S1742706119304593&rfr_iscdi=true |