Granulocytic myeloid-derived suppressor cells contribute to IFN-I signaling activation of B cells and disease progression through the lncRNA NEAT1-BAFF axis in systemic lupus erythematosus

Activation of interferon (IFN)-I signaling in B cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Recent studies have shown that myeloid-derived suppressor cells (MDSCs) significantly expand in SLE patients and lupus-prone MRL/lpr mice and contribute to the pathogenesis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular basis of disease 2020-01, Vol.1866 (1), p.165554-165554, Article 165554
Hauptverfasser: Dong, Guanjun, Yang, Yonghong, Li, Xuehui, Yao, Xiaoying, Zhu, Yuzhen, Zhang, Hui, Wang, Haiyan, Ma, Qun, Zhang, Junfeng, Shi, Hui, Ning, Zhaochen, Yan, Fenglian, Zhai, Weiwei, Dai, Jun, Li, Zhihua, Li, Chunxia, Ming, Jiankuo, Xue, Qingjie, Meng, Xiangzhi, Si, Chuanping, Xiong, Huabao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activation of interferon (IFN)-I signaling in B cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Recent studies have shown that myeloid-derived suppressor cells (MDSCs) significantly expand in SLE patients and lupus-prone MRL/lpr mice and contribute to the pathogenesis of SLE. However, the role of SLE-derived MDSCs in regulating IFN-I signaling activation of B cells remains unknown. Here, we demonstrate that expansions of MDSCs, including granulocyte (G)-MDSCs and monocytic (M)-MDSCs, during the progression of SLE were correlated with the IFN-I signature of B cells. Interestingly, G-MDSCs from MRL/lpr mice, but not M-MDSCs, could significantly promote IFN-I signaling activation of B cells and contribute to the pathogenesis of SLE. Mechanistically, we identified that the long non-coding RNA NEAT1 was over-expressed in G-MDSCs from MRL/lpr mice and could induce the promotion of G-MDSCs on IFN-I signaling activation of B cells through B cell-activating factor (BAFF) secretion. Importantly, NEAT1 deficiency significantly attenuated the lupus symptoms in pristane-induced lupus mice. In addition, there was a positive correlation between NEAT1 and BAFF with the IFN signature in SLE patients. In conclusion, G-MDSCs may contribute to the IFN signature in SLE B cells through the NEAT1-BAFF axis, highlighting G-MDSCs as a potential therapeutic target to treat SLE. •G-MDSCs from MRL/lpr mice promote IFN-I signaling activation of Bcells.•LncRNANEAT1 is over-expressed in G-MDSCs from MRL/lpr mice.•NEAT1 enhances the promotion of G-MDSCs on IFN-I signaling activation of B cells.•NEAT1 deficiency relieves the lupus symptoms of lupus-prone mice.
ISSN:0925-4439
1879-260X
DOI:10.1016/j.bbadis.2019.165554