Acidic surface functional groups control chemisorption of ammonium onto carbon materials in aqueous media

Elucidation of mechanistic insight into the interaction of carbon materials' physicochemical surface properties and ammonium (NH4+) adsorption in aqueous media was made by conducting a systematic study using a wide range of carbon materials. Three types of biochars (rice husk, poultry litter, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-01, Vol.698, p.134193-134193, Article 134193
Hauptverfasser: Sumaraj, Xiong, Zixi, Sarmah, Ajit K., Padhye, Lokesh P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elucidation of mechanistic insight into the interaction of carbon materials' physicochemical surface properties and ammonium (NH4+) adsorption in aqueous media was made by conducting a systematic study using a wide range of carbon materials. Three types of biochars (rice husk, poultry litter, and enhanced poultry litter) and activated carbons (fresh and aged coconut shell-based and charcoal-based) were used for investigating the NH4+ adsorption mechanism. Poultry litter biochar, with lowest surface area (3 m2 g−1) and largest pore diameter (29 nm), showed the highest NH4+ adsorption capacity (0.34 mg NH4+g−1), while charcoal-based activated carbon, with the highest surface area (1133 m2 g−1) and small pore diameter (6 nm), had the least NH4+ adsorption capacity (0.09 mg NH4+g−1). The value of Freundlich isotherm constant ‘n’ was >1 for all tested carbon materials indicating chemisorption as the dominant sorption mechanism. Aging of the carbon surface resulted in 30% increase in NH4+ retention. Surface chemical properties that most influenced NH4+ chemisorption on to carbon materials were found to be acidic surface functional groups (ASFGs), elemental composition, ash content, and pH. The optimal conditions for NH4+ adsorption, regardless of type and source of carbon materials, were solution pH of 8, a high amount of ash content, and carboxyl, carbonyl, and phenolic functional groups. Evaluation of CEC and ASFGs indicated that CEC and ASFGs are not equivalent terms. Through this study, conducted on carbon adsorbents derived from different sources, with different surface physical and chemical properties, we established that ASFGs, and not CEC, play a critical role in ammonium chemisorption on carbon materials. The study showed that low cost and eco-friendly biochars, with optimal surface chemistry, can replace expensive activated carbons for NH4+ remediation in aqueous media. [Display omitted] •Chemisorption is a dominant adsorption mechanism of NH4+ on the carbon surface.•Carboxyl, carbonyl, and phenolic surface functional groups dominate NH4+ adsorption.•Cation exchange capacity and acidic surface functional groups are not equivalent.•Biochars with optimal surface chemistry adsorb NH4+ better than activated carbon.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.134193