High efficiency active wavefront manipulation of spin photonics based on a graphene metasurface

Metasurfaces have been widely studied for manipulating light fields. In this work, a novel metasurface element is achieved with a high circular polarization amplitude conversion efficiency of 88.5% that creates an opposite phase shift ranging from -180° to 180° between incidence and reflection for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-08, Vol.27 (16), p.22475-22484
Hauptverfasser: Bai, Xiangxing, Tang, Linlong, Yao, Wei, Zang, Qing, Li, Jialu, Liu, Shuang, Lu, Wenqiang, Liu, Yang, Sun, Xiudong, Lu, Yueguang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metasurfaces have been widely studied for manipulating light fields. In this work, a novel metasurface element is achieved with a high circular polarization amplitude conversion efficiency of 88.5% that creates an opposite phase shift ranging from -180° to 180° between incidence and reflection for different spin components. By arranging the elements according to different requirements, spin-dependent reflection, focusing and scattering are demonstrated. It is also demonstrated that tuning of the Fermi energy is an viable way to active control the circular polarization conversion efficiency and expand the applicable bandwidth. The results open a new route for modifying and designing the wavefront of circular polarized light.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.022475