Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning

Random Phase Encoding (RPE) techniques for image encryption have drawn increasing attention during the past decades. We demonstrate in this contribution that the RPE-based optical cryptosystems are vulnerable to the chosen-plaintext attack (CPA) with deep learning strategy. A deep neural network (DN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-07, Vol.27 (15), p.21204-21213
Hauptverfasser: Hai, Han, Pan, Shuixin, Liao, Meihua, Lu, Dajiang, He, Wenqi, Peng, Xiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Random Phase Encoding (RPE) techniques for image encryption have drawn increasing attention during the past decades. We demonstrate in this contribution that the RPE-based optical cryptosystems are vulnerable to the chosen-plaintext attack (CPA) with deep learning strategy. A deep neural network (DNN) model is employed and trained to learn the working mechanism of optical cryptosystems, and finally obtaining a certain optimized DNN that acts as a decryption system. Numerical simulations were carried out to verify its feasibility and reliability of not only the classical Double RPE (DRPE) scheme but also the security-enhanced Tripe RPE (TRPE) scheme. The results further indicate the possibility of reconstructing images (plaintexts) outside the original data set.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.021204