Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection

Via Santa Fe time series prediction and nonlinear channel equalization tasks, the performances of a reservoir computing (RC) system based on an optical feedback semiconductor laser (SL) under electrical information injection are numerically investigated. The simulated results show that the feedback...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-07, Vol.27 (14), p.19931-19939
Hauptverfasser: Yue, DianZuo, Wu, ZhengMao, Hou, YuShuang, Cui, Bing, Jin, YanHong, Dai, Min, Xia, GuangQiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Via Santa Fe time series prediction and nonlinear channel equalization tasks, the performances of a reservoir computing (RC) system based on an optical feedback semiconductor laser (SL) under electrical information injection are numerically investigated. The simulated results show that the feedback delay time and strength seriously affect the performances of this RC system. By adopting a current-related optimized feedback delay time and strength, the RC can achieve a good performance for an SL biased within a wide region of 1.1-3.5 times its threshold. The prediction errors are smaller than 0.01 when implementing the Santa Fe tests, and the symbol error rates (SERs) are very low on the order of 10 for accomplishing nonlinear channel equalization tests under a signal-to-noise ratio (SNR) of 32 dB. Moreover, under a given RC performance level, the information processing rate of the RC can be improved by increasing the SL current.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.019931