Encoding of arbitrary micrometric complex illumination patterns with reduced speckle
In nonlinear microscopy, phase-only spatial light modulators (SLMs) allow achieving simultaneous two-photon excitation and fluorescence emission from specific region-of-interests (ROIs). However, as iterative Fourier transform algorithms (IFTAs) can only approximate the illumination of selected ROIs...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-07, Vol.27 (14), p.19788-19801 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In nonlinear microscopy, phase-only spatial light modulators (SLMs) allow achieving simultaneous two-photon excitation and fluorescence emission from specific region-of-interests (ROIs). However, as iterative Fourier transform algorithms (IFTAs) can only approximate the illumination of selected ROIs, both image formation and/or signal acquisition can be largely affected by the spatial irregularities of the illumination patterns and the speckle noise. To overcome these limitations, we propose an alternative complex illumination method (CIM) able to generate simultaneous excitation of large-area ROIs with full control over the amplitude and phase of light and reduced speckle. As a proof-of-concept we experimentally demonstrate single-photon and second harmonic generation (SHG) with structured illumination over large-area ROIs. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.019788 |