Mean squared displacement in a generalized Lévy walk model

Lévy walks represent a class of stochastic models (space-time-coupled continuous-time random walks) with applications ranging from the laser cooling to the description of animal motion. The initial model was intended for the description of turbulent dispersion as given by the Richardson law. The exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2019-07, Vol.100 (1-1), p.012117-012117, Article 012117
Hauptverfasser: Bothe, M, Sagues, F, Sokolov, I M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lévy walks represent a class of stochastic models (space-time-coupled continuous-time random walks) with applications ranging from the laser cooling to the description of animal motion. The initial model was intended for the description of turbulent dispersion as given by the Richardson law. The existence of this Richardson regime in the original model was recently challenged [T. Albers and G. Radons, Phys. Rev. Lett. 120, 104501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.104501]: The mean squared displacement (MSD) in this model diverges, i.e., does not exist, in the regime, where it presumably should reproduce the Richardson law. In the Supplemental Material to that work the authors present (but do not investigate in detail) a generalized model interpolating between the original one and the Drude-like models known to show no divergences. In the present work we give a detailed investigation of the ensemble MSD in this generalized model, show that the behavior of the MSD in this model is the same (up to prefactors) as in the original one in the domains where the MSD in the original model does exist, and investigate the conditions under which the MSD in the generalized model does exist or diverges. Both ordinary and aged situations are considered.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.100.012117