Role of irisin in androgen-deficient muscle wasting and osteopenia in mice
Androgen deficiency plays a crucial role in the pathogenesis of male osteoporosis and sarcopenia. Myokines have recently been identified as humoral factors that are involved in the interactions between muscle and bone; however, the influence of androgen deficiency on these interactions remains uncle...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral metabolism 2020-03, Vol.38 (2), p.161-171 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Androgen deficiency plays a crucial role in the pathogenesis of male osteoporosis and sarcopenia. Myokines have recently been identified as humoral factors that are involved in the interactions between muscle and bone; however, the influence of androgen deficiency on these interactions remains unclear. Therefore, we herein investigated the roles of humoral factors linking muscle to bone using orchidectomized mice with sarcopenia and osteopenia. Orchidectomy (ORX) significantly reduced muscle mass, grip strength, and trabecular bone mineral density (BMD) in mice. Among the myokines examined, ORX only significantly reduced fibronectin type III domain-containing 5 (Fndc5) mRNA levels in both the soleus and gastrocnemius muscles of mice. In simple regression analyses, Fndc5 mRNA levels in the soleus muscle positively correlated with trabecular BMD, but not cortical BMD. The administration of irisin, a product of Fndc5, significantly protected against the decrease induced in trabecular BMD, but not muscle mass, by androgen deficiency in mice. In conclusion, the present results demonstrated that androgen deficiency decreases the expression of irisin in the skeletal muscle of mice. Irisin may be involved in muscle/bone relationships negatively affected by androgen deficiency. |
---|---|
ISSN: | 0914-8779 1435-5604 |
DOI: | 10.1007/s00774-019-01043-7 |