Analysis of Interactions between Endobiotics and Human Gut Microbiota Using In Vitro Bath Fermentation Systems
Human intestinal microorganisms have recently become an important target of research in promoting human health and preventing diseases. Consequently, investigations of interactions between endobiotics (e.g., drugs and prebiotics) and gut microbiota have become an important research topic. However, i...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2019-08 (150) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human intestinal microorganisms have recently become an important target of research in promoting human health and preventing diseases. Consequently, investigations of interactions between endobiotics (e.g., drugs and prebiotics) and gut microbiota have become an important research topic. However, in vivo experiments with human volunteers are not ideal for such studies due to bioethics and economic constraints. As a result, animal models have been used to evaluate these interactions in vivo. Nevertheless, animal model studies are still limited by bioethics considerations, in addition to differing compositions and diversities of microbiota in animals vs. humans. An alternative research strategy is the use of batch fermentation experiments that allow evaluation of the interactions between endobiotics and gut microbiota in vitro. To evaluate this strategy, bifidobacterial (Bif) exopolysaccharides (EPS) were used as a representative xenobiotic. Then, the interactions between Bif EPS and human gut microbiota were investigated using several methods such as thin-layer chromatography (TLC), bacterial community compositional analysis with 16S rRNA gene high-throughput sequencing, and gas chromatography of short-chain fatty acids (SCFAs). Presented here is a protocol to investigate the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems. Importantly, this protocol can also be modified to investigate general interactions between other endobiotics and gut microbiota. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/59725 |