Energy arguments in linear thermoelasticity
This article studies the classical solutions of the mixed initial-boundary value problem in the linear dynamic theory of anisotropic thermoelasticity. Conditions are established to ensure that the classical solution is either Hoelder or logarithmic stable. These two forms of continuous dependence ar...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 1977-03, Vol.28 (1-4), p.201-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article studies the classical solutions of the mixed initial-boundary value problem in the linear dynamic theory of anisotropic thermoelasticity. Conditions are established to ensure that the classical solution is either Hoelder or logarithmic stable. These two forms of continuous dependence are pertinent to certain problems which require a numerical solution. The method adopted is an extension of the familiar energy arguments of continuum mechanics. Some uniqueness theorems are also presented. |
---|---|
ISSN: | 0001-5970 1619-6937 |
DOI: | 10.1007/BF01208798 |