Enhanced osmoregulatory ability marks the smoltification period in developing chum salmon (Oncorhynchus keta)

The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2019-12, Vol.238, p.110565-110565, Article 110565
Hauptverfasser: Wong, Marty Kwok-Shing, Nobata, Shigenori, Hyodo, Susumu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The freshwater (FW) life of chum salmon is short, as they migrate to the ocean soon after emergence from the substrate gravel of natal waters. The alevins achieve seawater (SW) acclimating ability at an early developmental stage and the details of smoltification are not clear. We examined the stage-dependent SW acclimating ability in chum salmon alevins and found a sharp increase in SW tolerance during development that resembles the physiological parr-smolt transformation seen in other salmonids. Perturbation of plasma Na+ after SW exposure was prominent from the hatched embryo stage to emerged alevins, but the plasma Na+ became highly stable and more resistant to perturbation soon after complete absorption of yolk. Marker gene expression for SW-ionocytes including Na/K-ATPase (NKA α1b), Na-K-Cl cotransporter 1a (NKCC1a), Na/H exchanger 3a (NHE3a), cystic fibrosis transmembrane conductance regulators (CFTR I and CFTR II) were all upregulated profoundly at the same stage when the alevins were challenged by SW, suggesting that the stability of plasma Na+ concentration was partly a result of elevated osmoregulatory capability. FW-ionocyte markers including NKA α1a and NHE3b were consistently downregulated independent of stage by SW exposure, suggesting that embryos at all stages respond to salinity challenge, but the increase in SW osmoregulatory capability is restricted to the developmental stage after emergence. We propose that the “smoltification period” is condensed and integrated into the early development of chum salmon, and our results can be extrapolated to the future studies on hormonal controls and developmental triggers for smoltification in salmonids. [Display omitted] •Chum salmon have a short freshwater life with ambiguous smoltification process.•The stage-dependent seawater tolerance of chum salmon alevins was investigated.•Seawater acclimation ability of alevins was increased after full yolk absorption.•Transporter genes in ionocytes were seawater sensitive at the transition stage.•The smoltification window in chum salmon was proposed.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2019.110565