Identification of adaptive inhibitors of Cryptosporidium parvum fatty acyl-coenzyme A synthetase isoforms by virtual screening

Cryptosporidiosis is a significant cause of gastroenteritis in both humans and livestock in developing countries. The only FDA-approved drug available against the same is nitazoxanide, with questionable efficacy in malnourished children and immunocompromised patients. Recent in vitro studies have in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasitology research (1987) 2019-11, Vol.118 (11), p.3159-3171
Hauptverfasser: Chattopadhyay, Somdeb, Mahapatra, Rajani Kanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryptosporidiosis is a significant cause of gastroenteritis in both humans and livestock in developing countries. The only FDA-approved drug available against the same is nitazoxanide, with questionable efficacy in malnourished children and immunocompromised patients. Recent in vitro studies have indicated the viability of Triacsin C as a potential drug candidate, which targets the parasite’s long-chain fatty acyl coenzyme A synthetase enzyme (LC-FACS), a critical component of the fatty acid metabolism pathway. We have used this molecule as a baseline to propose more potent versions thereof. We have applied a combined approach of substructure replacement, literature search, and database screening to come up with 514 analogs of Triacsin C. A virtual screening protocol was carried out which lead us to identify a potential hit compound. This was further subjected to a 100-ns molecular dynamics simulation in complex to determine its stability and binding characteristics. After which, the ADME/tox properties were predicted to assess its viability as a drug. The molecule R134 was identified as the best hit due to its highest average binding affinity, stability in complex when subjected to MD simulations, and reasonable predicted ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties comparable to those of the Triacsin C parent molecule. We have proposed R134 as a putative drug candidate against the Cryptosporidium parvum LC-FACS enzyme isoforms, following an in silico protocol. We hope the results will be helpful when planning future in vitro experiments for identifying drugs against Cryptosporidium.
ISSN:0932-0113
1432-1955
DOI:10.1007/s00436-019-06445-0