Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome

This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of cardiology 2019-11, Vol.124 (9), p.1340-1348
Hauptverfasser: von Knebel Doeberitz, Philipp L., De Cecco, Carlo N., Schoepf, U. Joseph, Albrecht, Moritz H., van Assen, Marly, De Santis, Domenico, Gaskins, Jeffrey, Martin, Simon, Bauer, Maximilian J., Ebersberger, Ullrich, Giovagnoli, Dante A., Varga-Szemes, Akos, Bayer, Richard R., Schönberg, Stefan O., Tesche, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1348
container_issue 9
container_start_page 1340
container_title The American journal of cardiology
container_volume 124
creator von Knebel Doeberitz, Philipp L.
De Cecco, Carlo N.
Schoepf, U. Joseph
Albrecht, Moritz H.
van Assen, Marly
De Santis, Domenico
Gaskins, Jeffrey
Martin, Simon
Bauer, Maximilian J.
Ebersberger, Ullrich
Giovagnoli, Dante A.
Varga-Szemes, Akos
Bayer, Richard R.
Schönberg, Stefan O.
Tesche, Christian
description This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (ICA) were analyzed in this single-center retrospective, institutional review board-approved, HIPAA-compliant study. Follow-up was performed to record major adverse cardiac events (MACE). Plaque quantification of lesions responsible for MACE and control lesions was retrospectively performed semiautomatically from cCTA together with machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to predict MACE was evaluated. After a median follow-up of 18.5 months (interquartile range 11.5 to 26.6 months), MACE was observed in 18 patients (21%). In a multivariate analysis the following markers were predictors of MACE (odds ratio [OR]): lesion length (OR 1.16, p = 0.018), low-attenuation plaque (
doi_str_mv 10.1016/j.amjcard.2019.07.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2284565552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914919308926</els_id><sourcerecordid>2284565552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-a363628597595ff2a1c014e4c2433e05df7a9530b8eca96137321461d516de73</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYsvCI4AsceGS4InjOD6hqkthpaIF1LvltSddR0kc7KRoeS4eEK9aOCAhTh5rvvntf_4sewm0AAr1267QQ2d0sEVJQRZUFLSGR9kKGiFzkMAeZytKaZlLqORF9izGLl0BeP00u2BQNQBCrLKf18OkzUx8SzY--FGH-1QM0zJjcD_Qkr0f_CHo6e6erMeDO9f5VWofU_tzr78tSL4sepxd64yenR-JHi35pM2dGzHfoQ6jGw__lN2G9IE0pXuy7f138hUjhiOSpLO2RwwRySb5dNqQm2U2fsDn2ZNW9xFfnM_LbL99v998zHc3H643611uqorOuWY1q8uGS8Elb9tSg6FQYWXKijGk3LZCS87obYNGyxqYYCVUNVgOtUXBLrM3J9kp-GQyzmpw0WDf6xH9ElVZNhWvOedlQl__hXZ-CclSohjlopYCeKL4iTLBxxiwVVNwQ1q5AqoeUlWdOqeqHlJVVKiUapp7dVZfbge0f6Z-x5iAdycA0zaODoOKxuFo0LqAZlbWu_888QsWXrh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305769715</pqid></control><display><type>article</type><title>Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>von Knebel Doeberitz, Philipp L. ; De Cecco, Carlo N. ; Schoepf, U. Joseph ; Albrecht, Moritz H. ; van Assen, Marly ; De Santis, Domenico ; Gaskins, Jeffrey ; Martin, Simon ; Bauer, Maximilian J. ; Ebersberger, Ullrich ; Giovagnoli, Dante A. ; Varga-Szemes, Akos ; Bayer, Richard R. ; Schönberg, Stefan O. ; Tesche, Christian</creator><creatorcontrib>von Knebel Doeberitz, Philipp L. ; De Cecco, Carlo N. ; Schoepf, U. Joseph ; Albrecht, Moritz H. ; van Assen, Marly ; De Santis, Domenico ; Gaskins, Jeffrey ; Martin, Simon ; Bauer, Maximilian J. ; Ebersberger, Ullrich ; Giovagnoli, Dante A. ; Varga-Szemes, Akos ; Bayer, Richard R. ; Schönberg, Stefan O. ; Tesche, Christian</creatorcontrib><description>This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (ICA) were analyzed in this single-center retrospective, institutional review board-approved, HIPAA-compliant study. Follow-up was performed to record major adverse cardiac events (MACE). Plaque quantification of lesions responsible for MACE and control lesions was retrospectively performed semiautomatically from cCTA together with machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to predict MACE was evaluated. After a median follow-up of 18.5 months (interquartile range 11.5 to 26.6 months), MACE was observed in 18 patients (21%). In a multivariate analysis the following markers were predictors of MACE (odds ratio [OR]): lesion length (OR 1.16, p = 0.018), low-attenuation plaque (&lt;30 HU) (OR 4.59, p = 0.003), Napkin ring sign (OR 2.71, p = 0.034), stenosis ≥50% (OR 3.83, p 0.042), and CT-FFR ≤0.80 (OR 7.78, p = 0.001). Receiver operating characteristics analysis including stenosis ≥50%, plaque markers and CT-FFR ≤0.80 (Area under the curve 0.94) showed incremental discriminatory power over stenosis ≥50% alone (Area under the curve 0.60, p &lt;0.0001) for the prediction of MACE. cCTA-derived plaque markers and machine-learning CT-FFR demonstrate predictive value to identify MACE. In conclusion, combining plaque markers with machine-learning CT-FFR shows incremental discriminatory power over cCTA stenosis grading alone.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2019.07.061</identifier><identifier>PMID: 31481177</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Angina pectoris ; Angiography ; Attenuation ; Body mass index ; Calcification ; Cardiovascular disease ; Computed tomography ; Computed Tomography Angiography - methods ; Coronary Angiography - methods ; Coronary Stenosis - diagnosis ; Coronary Stenosis - etiology ; Coronary Stenosis - mortality ; Coronary vessels ; Coronary Vessels - diagnostic imaging ; Coronary Vessels - physiopathology ; Electrocardiography ; Evaluation ; Female ; Follow-Up Studies ; Fractional Flow Reserve, Myocardial - physiology ; Heart ; Heart attacks ; Heart surgery ; Humans ; Learning algorithms ; Lesions ; Machine Learning ; Male ; Markers ; Medical imaging ; Medical records ; Middle Aged ; Multidetector Computed Tomography - methods ; Multivariate analysis ; Patients ; Plaque, Atherosclerotic - complications ; Plaque, Atherosclerotic - diagnosis ; Plaque, Atherosclerotic - mortality ; Predictions ; Prognosis ; Retrospective Studies ; ROC Curve ; Sensors ; Severity of Illness Index ; Software ; Stenosis ; Stents ; Survival Rate - trends ; United States - epidemiology</subject><ispartof>The American journal of cardiology, 2019-11, Vol.124 (9), p.1340-1348</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-a363628597595ff2a1c014e4c2433e05df7a9530b8eca96137321461d516de73</citedby><cites>FETCH-LOGICAL-c440t-a363628597595ff2a1c014e4c2433e05df7a9530b8eca96137321461d516de73</cites><orcidid>0000-0002-6164-5641 ; 0000-0003-3347-4520 ; 0000-0002-3584-4284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002914919308926$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31481177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Knebel Doeberitz, Philipp L.</creatorcontrib><creatorcontrib>De Cecco, Carlo N.</creatorcontrib><creatorcontrib>Schoepf, U. Joseph</creatorcontrib><creatorcontrib>Albrecht, Moritz H.</creatorcontrib><creatorcontrib>van Assen, Marly</creatorcontrib><creatorcontrib>De Santis, Domenico</creatorcontrib><creatorcontrib>Gaskins, Jeffrey</creatorcontrib><creatorcontrib>Martin, Simon</creatorcontrib><creatorcontrib>Bauer, Maximilian J.</creatorcontrib><creatorcontrib>Ebersberger, Ullrich</creatorcontrib><creatorcontrib>Giovagnoli, Dante A.</creatorcontrib><creatorcontrib>Varga-Szemes, Akos</creatorcontrib><creatorcontrib>Bayer, Richard R.</creatorcontrib><creatorcontrib>Schönberg, Stefan O.</creatorcontrib><creatorcontrib>Tesche, Christian</creatorcontrib><title>Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (ICA) were analyzed in this single-center retrospective, institutional review board-approved, HIPAA-compliant study. Follow-up was performed to record major adverse cardiac events (MACE). Plaque quantification of lesions responsible for MACE and control lesions was retrospectively performed semiautomatically from cCTA together with machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to predict MACE was evaluated. After a median follow-up of 18.5 months (interquartile range 11.5 to 26.6 months), MACE was observed in 18 patients (21%). In a multivariate analysis the following markers were predictors of MACE (odds ratio [OR]): lesion length (OR 1.16, p = 0.018), low-attenuation plaque (&lt;30 HU) (OR 4.59, p = 0.003), Napkin ring sign (OR 2.71, p = 0.034), stenosis ≥50% (OR 3.83, p 0.042), and CT-FFR ≤0.80 (OR 7.78, p = 0.001). Receiver operating characteristics analysis including stenosis ≥50%, plaque markers and CT-FFR ≤0.80 (Area under the curve 0.94) showed incremental discriminatory power over stenosis ≥50% alone (Area under the curve 0.60, p &lt;0.0001) for the prediction of MACE. cCTA-derived plaque markers and machine-learning CT-FFR demonstrate predictive value to identify MACE. In conclusion, combining plaque markers with machine-learning CT-FFR shows incremental discriminatory power over cCTA stenosis grading alone.</description><subject>Angina pectoris</subject><subject>Angiography</subject><subject>Attenuation</subject><subject>Body mass index</subject><subject>Calcification</subject><subject>Cardiovascular disease</subject><subject>Computed tomography</subject><subject>Computed Tomography Angiography - methods</subject><subject>Coronary Angiography - methods</subject><subject>Coronary Stenosis - diagnosis</subject><subject>Coronary Stenosis - etiology</subject><subject>Coronary Stenosis - mortality</subject><subject>Coronary vessels</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Coronary Vessels - physiopathology</subject><subject>Electrocardiography</subject><subject>Evaluation</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Fractional Flow Reserve, Myocardial - physiology</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Heart surgery</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Markers</subject><subject>Medical imaging</subject><subject>Medical records</subject><subject>Middle Aged</subject><subject>Multidetector Computed Tomography - methods</subject><subject>Multivariate analysis</subject><subject>Patients</subject><subject>Plaque, Atherosclerotic - complications</subject><subject>Plaque, Atherosclerotic - diagnosis</subject><subject>Plaque, Atherosclerotic - mortality</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensors</subject><subject>Severity of Illness Index</subject><subject>Software</subject><subject>Stenosis</subject><subject>Stents</subject><subject>Survival Rate - trends</subject><subject>United States - epidemiology</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcGO0zAQhiMEYsvCI4AsceGS4InjOD6hqkthpaIF1LvltSddR0kc7KRoeS4eEK9aOCAhTh5rvvntf_4sewm0AAr1267QQ2d0sEVJQRZUFLSGR9kKGiFzkMAeZytKaZlLqORF9izGLl0BeP00u2BQNQBCrLKf18OkzUx8SzY--FGH-1QM0zJjcD_Qkr0f_CHo6e6erMeDO9f5VWofU_tzr78tSL4sepxd64yenR-JHi35pM2dGzHfoQ6jGw__lN2G9IE0pXuy7f138hUjhiOSpLO2RwwRySb5dNqQm2U2fsDn2ZNW9xFfnM_LbL99v998zHc3H643611uqorOuWY1q8uGS8Elb9tSg6FQYWXKijGk3LZCS87obYNGyxqYYCVUNVgOtUXBLrM3J9kp-GQyzmpw0WDf6xH9ElVZNhWvOedlQl__hXZ-CclSohjlopYCeKL4iTLBxxiwVVNwQ1q5AqoeUlWdOqeqHlJVVKiUapp7dVZfbge0f6Z-x5iAdycA0zaODoOKxuFo0LqAZlbWu_888QsWXrh_</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>von Knebel Doeberitz, Philipp L.</creator><creator>De Cecco, Carlo N.</creator><creator>Schoepf, U. Joseph</creator><creator>Albrecht, Moritz H.</creator><creator>van Assen, Marly</creator><creator>De Santis, Domenico</creator><creator>Gaskins, Jeffrey</creator><creator>Martin, Simon</creator><creator>Bauer, Maximilian J.</creator><creator>Ebersberger, Ullrich</creator><creator>Giovagnoli, Dante A.</creator><creator>Varga-Szemes, Akos</creator><creator>Bayer, Richard R.</creator><creator>Schönberg, Stefan O.</creator><creator>Tesche, Christian</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6164-5641</orcidid><orcidid>https://orcid.org/0000-0003-3347-4520</orcidid><orcidid>https://orcid.org/0000-0002-3584-4284</orcidid></search><sort><creationdate>20191101</creationdate><title>Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome</title><author>von Knebel Doeberitz, Philipp L. ; De Cecco, Carlo N. ; Schoepf, U. Joseph ; Albrecht, Moritz H. ; van Assen, Marly ; De Santis, Domenico ; Gaskins, Jeffrey ; Martin, Simon ; Bauer, Maximilian J. ; Ebersberger, Ullrich ; Giovagnoli, Dante A. ; Varga-Szemes, Akos ; Bayer, Richard R. ; Schönberg, Stefan O. ; Tesche, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-a363628597595ff2a1c014e4c2433e05df7a9530b8eca96137321461d516de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angina pectoris</topic><topic>Angiography</topic><topic>Attenuation</topic><topic>Body mass index</topic><topic>Calcification</topic><topic>Cardiovascular disease</topic><topic>Computed tomography</topic><topic>Computed Tomography Angiography - methods</topic><topic>Coronary Angiography - methods</topic><topic>Coronary Stenosis - diagnosis</topic><topic>Coronary Stenosis - etiology</topic><topic>Coronary Stenosis - mortality</topic><topic>Coronary vessels</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Coronary Vessels - physiopathology</topic><topic>Electrocardiography</topic><topic>Evaluation</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Fractional Flow Reserve, Myocardial - physiology</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Heart surgery</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Markers</topic><topic>Medical imaging</topic><topic>Medical records</topic><topic>Middle Aged</topic><topic>Multidetector Computed Tomography - methods</topic><topic>Multivariate analysis</topic><topic>Patients</topic><topic>Plaque, Atherosclerotic - complications</topic><topic>Plaque, Atherosclerotic - diagnosis</topic><topic>Plaque, Atherosclerotic - mortality</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensors</topic><topic>Severity of Illness Index</topic><topic>Software</topic><topic>Stenosis</topic><topic>Stents</topic><topic>Survival Rate - trends</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Knebel Doeberitz, Philipp L.</creatorcontrib><creatorcontrib>De Cecco, Carlo N.</creatorcontrib><creatorcontrib>Schoepf, U. Joseph</creatorcontrib><creatorcontrib>Albrecht, Moritz H.</creatorcontrib><creatorcontrib>van Assen, Marly</creatorcontrib><creatorcontrib>De Santis, Domenico</creatorcontrib><creatorcontrib>Gaskins, Jeffrey</creatorcontrib><creatorcontrib>Martin, Simon</creatorcontrib><creatorcontrib>Bauer, Maximilian J.</creatorcontrib><creatorcontrib>Ebersberger, Ullrich</creatorcontrib><creatorcontrib>Giovagnoli, Dante A.</creatorcontrib><creatorcontrib>Varga-Szemes, Akos</creatorcontrib><creatorcontrib>Bayer, Richard R.</creatorcontrib><creatorcontrib>Schönberg, Stefan O.</creatorcontrib><creatorcontrib>Tesche, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Knebel Doeberitz, Philipp L.</au><au>De Cecco, Carlo N.</au><au>Schoepf, U. Joseph</au><au>Albrecht, Moritz H.</au><au>van Assen, Marly</au><au>De Santis, Domenico</au><au>Gaskins, Jeffrey</au><au>Martin, Simon</au><au>Bauer, Maximilian J.</au><au>Ebersberger, Ullrich</au><au>Giovagnoli, Dante A.</au><au>Varga-Szemes, Akos</au><au>Bayer, Richard R.</au><au>Schönberg, Stefan O.</au><au>Tesche, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>124</volume><issue>9</issue><spage>1340</spage><epage>1348</epage><pages>1340-1348</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><abstract>This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (ICA) were analyzed in this single-center retrospective, institutional review board-approved, HIPAA-compliant study. Follow-up was performed to record major adverse cardiac events (MACE). Plaque quantification of lesions responsible for MACE and control lesions was retrospectively performed semiautomatically from cCTA together with machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to predict MACE was evaluated. After a median follow-up of 18.5 months (interquartile range 11.5 to 26.6 months), MACE was observed in 18 patients (21%). In a multivariate analysis the following markers were predictors of MACE (odds ratio [OR]): lesion length (OR 1.16, p = 0.018), low-attenuation plaque (&lt;30 HU) (OR 4.59, p = 0.003), Napkin ring sign (OR 2.71, p = 0.034), stenosis ≥50% (OR 3.83, p 0.042), and CT-FFR ≤0.80 (OR 7.78, p = 0.001). Receiver operating characteristics analysis including stenosis ≥50%, plaque markers and CT-FFR ≤0.80 (Area under the curve 0.94) showed incremental discriminatory power over stenosis ≥50% alone (Area under the curve 0.60, p &lt;0.0001) for the prediction of MACE. cCTA-derived plaque markers and machine-learning CT-FFR demonstrate predictive value to identify MACE. In conclusion, combining plaque markers with machine-learning CT-FFR shows incremental discriminatory power over cCTA stenosis grading alone.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31481177</pmid><doi>10.1016/j.amjcard.2019.07.061</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6164-5641</orcidid><orcidid>https://orcid.org/0000-0003-3347-4520</orcidid><orcidid>https://orcid.org/0000-0002-3584-4284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9149
ispartof The American journal of cardiology, 2019-11, Vol.124 (9), p.1340-1348
issn 0002-9149
1879-1913
language eng
recordid cdi_proquest_miscellaneous_2284565552
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Angina pectoris
Angiography
Attenuation
Body mass index
Calcification
Cardiovascular disease
Computed tomography
Computed Tomography Angiography - methods
Coronary Angiography - methods
Coronary Stenosis - diagnosis
Coronary Stenosis - etiology
Coronary Stenosis - mortality
Coronary vessels
Coronary Vessels - diagnostic imaging
Coronary Vessels - physiopathology
Electrocardiography
Evaluation
Female
Follow-Up Studies
Fractional Flow Reserve, Myocardial - physiology
Heart
Heart attacks
Heart surgery
Humans
Learning algorithms
Lesions
Machine Learning
Male
Markers
Medical imaging
Medical records
Middle Aged
Multidetector Computed Tomography - methods
Multivariate analysis
Patients
Plaque, Atherosclerotic - complications
Plaque, Atherosclerotic - diagnosis
Plaque, Atherosclerotic - mortality
Predictions
Prognosis
Retrospective Studies
ROC Curve
Sensors
Severity of Illness Index
Software
Stenosis
Stents
Survival Rate - trends
United States - epidemiology
title Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Coronary%20Computerized%20Tomography%20Angiography-Derived%20Plaque%20Quantification%20and%20Machine-Learning%20Computerized%20Tomography%20Fractional%20Flow%20Reserve%20on%20Adverse%20Cardiac%20Outcome&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=von%20Knebel%20Doeberitz,%20Philipp%20L.&rft.date=2019-11-01&rft.volume=124&rft.issue=9&rft.spage=1340&rft.epage=1348&rft.pages=1340-1348&rft.issn=0002-9149&rft.eissn=1879-1913&rft_id=info:doi/10.1016/j.amjcard.2019.07.061&rft_dat=%3Cproquest_cross%3E2284565552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305769715&rft_id=info:pmid/31481177&rft_els_id=S0002914919308926&rfr_iscdi=true