Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome
This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (I...
Gespeichert in:
Veröffentlicht in: | The American journal of cardiology 2019-11, Vol.124 (9), p.1340-1348 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who underwent cCTA and invasive coronary angiography (ICA) were analyzed in this single-center retrospective, institutional review board-approved, HIPAA-compliant study. Follow-up was performed to record major adverse cardiac events (MACE). Plaque quantification of lesions responsible for MACE and control lesions was retrospectively performed semiautomatically from cCTA together with machine-learning based CT-FFR. The discriminatory value of plaque markers and CT-FFR to predict MACE was evaluated. After a median follow-up of 18.5 months (interquartile range 11.5 to 26.6 months), MACE was observed in 18 patients (21%). In a multivariate analysis the following markers were predictors of MACE (odds ratio [OR]): lesion length (OR 1.16, p = 0.018), low-attenuation plaque ( |
---|---|
ISSN: | 0002-9149 1879-1913 |
DOI: | 10.1016/j.amjcard.2019.07.061 |