Pressure-Induced Superconductivity and Flattened Se6 Rings in the Wide Band Gap Semiconductor Cu2I2Se6

The two major classes of unconventional superconductors, cuprates and Fe-based superconductors, have magnetic parent compounds, are layered, and generally feature square-lattice symmetry. We report the discovery of pressure-induced superconductivity in a nonmagnetic and wide band gap 1.95 eV semicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-09, Vol.141 (38), p.15174-15182
Hauptverfasser: Cai, Weizhao, Lin, Wenwen, Li, Long-Hua, Malliakas, Christos D, Zhang, Rong, Groesbeck, Matthew, Bao, Jin-Ke, Zhang, Dongzhou, Sterer, Eran, Kanatzidis, Mercouri G, Deemyad, Shanti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two major classes of unconventional superconductors, cuprates and Fe-based superconductors, have magnetic parent compounds, are layered, and generally feature square-lattice symmetry. We report the discovery of pressure-induced superconductivity in a nonmagnetic and wide band gap 1.95 eV semiconductor, Cu2I2Se6, with a unique anisotropic structure composed of two types of distinct molecules: Se6 rings and Cu2I2 dimers, which are linked in a three-dimensional framework. Cu2I2Se6 exhibits a concurrent pressure-induced metallization and superconductivity at ∼21.0 GPa with critical temperature (T c) of ∼2.8 K. The T c monotonically increases within the range of our study reaching ∼9.0 K around 41.0 GPa. These observations coincide with unprecedented chair-to-planar conformational changes of Se6 rings, an abrupt decrease along the c-axis, and negative compression within the ab plane during the phase transition. DFT calculations demonstrate that the flattened Se6 rings within the CuSe layer create a high density of states at the Fermi level. The unique structural features of Cu2I2Se6 imply that superconductivity may emerge in anisotropic Cu-containing materials without square-lattice geometry and magnetic order in the parent compound.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b06794