Transcription factor OsNF-YB9 regulates reproductive growth and development in rice

Nuclear Factor-Y (NF-Y) family of transcription factors takes part in many aspects of growth and development in eukaryotes. They have been classified into three subunit classes, namely, NF-YA, NF-YB and NF-YC. In plants, this transcription factor family is much diverged and takes part in several dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2019-12, Vol.250 (6), p.1849-1865
Hauptverfasser: Das, Sweta, Parida, Swarup K., Agarwal, Pinky, Tyagi, Akhilesh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear Factor-Y (NF-Y) family of transcription factors takes part in many aspects of growth and development in eukaryotes. They have been classified into three subunit classes, namely, NF-YA, NF-YB and NF-YC. In plants, this transcription factor family is much diverged and takes part in several developmental processes and stress. We investigated NF-Y subunit genes of rice (Oryza sativa) and found OsNF-YB9 as the closest homologue of LEAFY COTYLEDON1. OsNF-YB9 delayed the heading date when ectopically expressed in rice. Expression of several heading date regulating genes such as Hd1, Ehd1, Hd3a and RFT1 were altered. OsNF-YB9 overexpression also resulted in morphological defects in the reproductive organs and led to pseudovivipary. OsNF-YB9 interacted with MADS1, a key regulator of floral development. This NF-Y subunit acted upstream to several transcription factors as well as signalling proteins involved in brassinosteroid and gibberellic acid metabolism and cell cycle. OsNF-YB9 and OsNF-YC12 interacted in planta and the latter also delayed heading in rice upon overexpression suggesting its involvement in a similar pathway. Our data provide new insights into the rice heading date pathway integrating these OsNF-Y subunit members to the network. These features can be exploited to improve vegetative growth and yield of rice plants in future.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-019-03268-2