Reversed stability conditions in transient finite element analysis
Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 1988-05, Vol.68 (1), p.97-114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 68 |
creator | Malkus, David S. Plesha, Michael E. Liu, Meng-Ru |
description | Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples. |
doi_str_mv | 10.1016/0045-7825(88)90109-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22841396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0045782588901090</els_id><sourcerecordid>22841396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmmSTbPYiaPELCoLoOcTsBCLb3ZpJC_33Zm3p0bkMA887wzyEnDN6wyhTt5QKWdaayyutrxvKaFPSAzJhum5Kzip9SCZ75JicIH7TXJrxCXl4hzVEhLbAZL9CF9KmcEPfhhSGHovQFynaHgP0qfChDwkK6GAxjra33QYDnpIjbzuEs12fks-nx4_ZSzl_e36d3c9LVymRSu0rZTW1TEvhwArVWiG9EFYxUUMrNdSyEVUjtW9arhko75Tn3MvcKymqKbnc7l3G4WcFmMwioIOusz0MKzSca8GqRmVQbEEXB8QI3ixjWNi4MYyaUZgZbZjRhtHa_AkzNMcudvstOtv5_LcLuM_WOaTrEbvbYpB_XQeIBl3W46ANEVwy7RD-v_MLyqx-3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22841396</pqid></control><display><type>article</type><title>Reversed stability conditions in transient finite element analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</creator><creatorcontrib>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</creatorcontrib><description>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(88)90109-0</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 1988-05, Vol.68 (1), p.97-114</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</citedby><cites>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0045782588901090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7004870$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malkus, David S.</creatorcontrib><creatorcontrib>Plesha, Michael E.</creatorcontrib><creatorcontrib>Liu, Meng-Ru</creatorcontrib><title>Reversed stability conditions in transient finite element analysis</title><title>Computer methods in applied mechanics and engineering</title><description>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmmSTbPYiaPELCoLoOcTsBCLb3ZpJC_33Zm3p0bkMA887wzyEnDN6wyhTt5QKWdaayyutrxvKaFPSAzJhum5Kzip9SCZ75JicIH7TXJrxCXl4hzVEhLbAZL9CF9KmcEPfhhSGHovQFynaHgP0qfChDwkK6GAxjra33QYDnpIjbzuEs12fks-nx4_ZSzl_e36d3c9LVymRSu0rZTW1TEvhwArVWiG9EFYxUUMrNdSyEVUjtW9arhko75Tn3MvcKymqKbnc7l3G4WcFmMwioIOusz0MKzSca8GqRmVQbEEXB8QI3ixjWNi4MYyaUZgZbZjRhtHa_AkzNMcudvstOtv5_LcLuM_WOaTrEbvbYpB_XQeIBl3W46ANEVwy7RD-v_MLyqx-3w</recordid><startdate>19880501</startdate><enddate>19880501</enddate><creator>Malkus, David S.</creator><creator>Plesha, Michael E.</creator><creator>Liu, Meng-Ru</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>19880501</creationdate><title>Reversed stability conditions in transient finite element analysis</title><author>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malkus, David S.</creatorcontrib><creatorcontrib>Plesha, Michael E.</creatorcontrib><creatorcontrib>Liu, Meng-Ru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malkus, David S.</au><au>Plesha, Michael E.</au><au>Liu, Meng-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversed stability conditions in transient finite element analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1988-05-01</date><risdate>1988</risdate><volume>68</volume><issue>1</issue><spage>97</spage><epage>114</epage><pages>97-114</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(88)90109-0</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 1988-05, Vol.68 (1), p.97-114 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_22841396 |
source | Elsevier ScienceDirect Journals |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Physics |
title | Reversed stability conditions in transient finite element analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversed%20stability%20conditions%20in%20transient%20finite%20element%20analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Malkus,%20David%20S.&rft.date=1988-05-01&rft.volume=68&rft.issue=1&rft.spage=97&rft.epage=114&rft.pages=97-114&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(88)90109-0&rft_dat=%3Cproquest_cross%3E22841396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22841396&rft_id=info:pmid/&rft_els_id=0045782588901090&rfr_iscdi=true |