Reversed stability conditions in transient finite element analysis

Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1988-05, Vol.68 (1), p.97-114
Hauptverfasser: Malkus, David S., Plesha, Michael E., Liu, Meng-Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 97
container_title Computer methods in applied mechanics and engineering
container_volume 68
creator Malkus, David S.
Plesha, Michael E.
Liu, Meng-Ru
description Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.
doi_str_mv 10.1016/0045-7825(88)90109-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22841396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0045782588901090</els_id><sourcerecordid>22841396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmmSTbPYiaPELCoLoOcTsBCLb3ZpJC_33Zm3p0bkMA887wzyEnDN6wyhTt5QKWdaayyutrxvKaFPSAzJhum5Kzip9SCZ75JicIH7TXJrxCXl4hzVEhLbAZL9CF9KmcEPfhhSGHovQFynaHgP0qfChDwkK6GAxjra33QYDnpIjbzuEs12fks-nx4_ZSzl_e36d3c9LVymRSu0rZTW1TEvhwArVWiG9EFYxUUMrNdSyEVUjtW9arhko75Tn3MvcKymqKbnc7l3G4WcFmMwioIOusz0MKzSca8GqRmVQbEEXB8QI3ixjWNi4MYyaUZgZbZjRhtHa_AkzNMcudvstOtv5_LcLuM_WOaTrEbvbYpB_XQeIBl3W46ANEVwy7RD-v_MLyqx-3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22841396</pqid></control><display><type>article</type><title>Reversed stability conditions in transient finite element analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</creator><creatorcontrib>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</creatorcontrib><description>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(88)90109-0</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 1988-05, Vol.68 (1), p.97-114</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</citedby><cites>FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0045782588901090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7004870$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malkus, David S.</creatorcontrib><creatorcontrib>Plesha, Michael E.</creatorcontrib><creatorcontrib>Liu, Meng-Ru</creatorcontrib><title>Reversed stability conditions in transient finite element analysis</title><title>Computer methods in applied mechanics and engineering</title><description>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmmSTbPYiaPELCoLoOcTsBCLb3ZpJC_33Zm3p0bkMA887wzyEnDN6wyhTt5QKWdaayyutrxvKaFPSAzJhum5Kzip9SCZ75JicIH7TXJrxCXl4hzVEhLbAZL9CF9KmcEPfhhSGHovQFynaHgP0qfChDwkK6GAxjra33QYDnpIjbzuEs12fks-nx4_ZSzl_e36d3c9LVymRSu0rZTW1TEvhwArVWiG9EFYxUUMrNdSyEVUjtW9arhko75Tn3MvcKymqKbnc7l3G4WcFmMwioIOusz0MKzSca8GqRmVQbEEXB8QI3ixjWNi4MYyaUZgZbZjRhtHa_AkzNMcudvstOtv5_LcLuM_WOaTrEbvbYpB_XQeIBl3W46ANEVwy7RD-v_MLyqx-3w</recordid><startdate>19880501</startdate><enddate>19880501</enddate><creator>Malkus, David S.</creator><creator>Plesha, Michael E.</creator><creator>Liu, Meng-Ru</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>19880501</creationdate><title>Reversed stability conditions in transient finite element analysis</title><author>Malkus, David S. ; Plesha, Michael E. ; Liu, Meng-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8f36a80a1854cea46da45f44a6147ed58e75943958f9d281e6fc6f22f5fc63543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malkus, David S.</creatorcontrib><creatorcontrib>Plesha, Michael E.</creatorcontrib><creatorcontrib>Liu, Meng-Ru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malkus, David S.</au><au>Plesha, Michael E.</au><au>Liu, Meng-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversed stability conditions in transient finite element analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1988-05-01</date><risdate>1988</risdate><volume>68</volume><issue>1</issue><spage>97</spage><epage>114</epage><pages>97-114</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(88)90109-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1988-05, Vol.68 (1), p.97-114
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_22841396
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Physics
title Reversed stability conditions in transient finite element analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T21%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversed%20stability%20conditions%20in%20transient%20finite%20element%20analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Malkus,%20David%20S.&rft.date=1988-05-01&rft.volume=68&rft.issue=1&rft.spage=97&rft.epage=114&rft.pages=97-114&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(88)90109-0&rft_dat=%3Cproquest_cross%3E22841396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22841396&rft_id=info:pmid/&rft_els_id=0045782588901090&rfr_iscdi=true