Reversed stability conditions in transient finite element analysis

Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1988-05, Vol.68 (1), p.97-114
Hauptverfasser: Malkus, David S., Plesha, Michael E., Liu, Meng-Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical methods which introduce artificially unstable modes are discussed. In structural and elastodynamics these results from optimal mass lumping with higher-order elements. In fluid mechanics an additional source of these modes can be a penalty function with alternating signs. These modes yield unstable modal equations; however, they do not necessarily imply unstable ttransient integration in the presence of algorithmic damping. Stable integration can be achieved by satisfying a stability condition in which the roles of space-step and time-step are reversed. Elastodynamics, the Navier-Stokes equations, and non-Newtonian fluids provide numerical examples.
ISSN:0045-7825
1879-2138
DOI:10.1016/0045-7825(88)90109-0