Modulatory role of HMG-CoA reductase inhibitors and ezetimibe on LDL-AGEs-induced ROS generation and RAGE-associated signalling in HEK-293 Cells

Advanced glycation end products (AGEs) trigger intracellular reactive oxygen species (ROS) generation, activation of receptor for AGEs (RAGE) expression/functionality and RAGE-associated signalling pathways which influence the diabetic-cum-atherosclerotic complications, whereas, the atherosclerosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2019-10, Vol.235, p.116823-116823, Article 116823
Hauptverfasser: Nabi, Rabia, Alvi, Sahir Sultan, Shah, Arunim, Chaturvedi, Chandra P., Iqbal, Danish, Ahmad, Saheem, Khan, M. Salman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced glycation end products (AGEs) trigger intracellular reactive oxygen species (ROS) generation, activation of receptor for AGEs (RAGE) expression/functionality and RAGE-associated signalling pathways which influence the diabetic-cum-atherosclerotic complications, whereas, the atherosclerosis progression is greatly influenced by hepatic β-Hydroxy-β-methyl-glutaryl-Co-A reductase (HMG-R) activity. The present report was premeditated to uncover the regulatory role of HMG-R inhibitors and ezetimibe (EZ) in attenuating the LDL-AGEs-induced pathogenicity via targeting cellular-ROS and RAGE-associated signalling in HEK-293 cells. The MTT assay was used to assess either the cytotoxic or cytoprotective impact of each HMG-R inhibitors, EZ, and LDL-AGEs, whereas, quantification of ROS was performed by DCFDA method. The qRT-PCR was used to detect the mRNA level of RAGE, neuropilin-1 (NRP-1) and other RAGE-associated genes like MMP-2, NF-κB, and TGFβ-1. The HMG-R inhibitors do not exert any cytotoxicity in HEK-293 cells, whereas, and LDL-AGEs negatively affected the cell viability of HEK-293 cells. However, viability of LDL-AGEs-treated HEK-293was markedly retained after simultaneous treatment with our test inhibitors. Further, DCFDA staining showed that LDL-AGEs-induced ROS was also suppressed upon treatment with our test inhibitors in HEK-293 cells. qRT-PCR analysis reflected that these inhibitors suppress the RAGE, NF-κB, TGFβ-1, and MMP-2 expression, whereas, the NRP-1 was up-regulated by these compounds in LDL-AGEs-exposed HEK-293 cells. The above pharmacological effects signify that HMG-R inhibitors and EZ (alone or in combination) may implied in the treatment of AGEs-induced oxidative stress and tissue damage in diabetic complications via targeting intracellular-ROS, NRP-1 functionality and RAGE-associated genes i.e. NF-κB, TGFβ-1, and MMP-2. [Display omitted]
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2019.116823