A Potato Peel Extract Stimulates Type I Collagen Synthesis via Akt and ERK Signaling in Normal Human Dermal Fibroblasts
The ability of dermal fibroblasts to synthesize collagen decreases with ages. The integrity of collagen fibers severely decreases in aged skin, causing its characteristic morphological changes such as wrinkles and sagging. To prevent and improve skin aging, the stimulation of collagen synthesis in d...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2019/09/01, Vol.42(9), pp.1510-1516 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of dermal fibroblasts to synthesize collagen decreases with ages. The integrity of collagen fibers severely decreases in aged skin, causing its characteristic morphological changes such as wrinkles and sagging. To prevent and improve skin aging, the stimulation of collagen synthesis in dermal fibroblasts is important. Potato peels contain many biofunctional compounds, but not much is known about their effects on human skin physiology. To characterize the potential effects of a potato peel extract (PPE) against skin aging, we examined its effects on the synthesis of type I collagen by normal human dermal fibroblasts (NHDFs). Treatment with the PPE significantly increased the expression of type I collagen mRNA in NHDFs and their secretion of type I collagen. To elucidate the mechanism involved, we examined the signaling pathway controlled by transforming growth factor-β (TGF-β), which regulates the synthesis of type I collagen. Treatment of NHDFs with the PPE significantly increased the expression of TGF-β receptor mRNA. TGF-β signaling involves Smad-dependent and Smad-independent pathways, like phosphatidylinositol-3 kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). The PPE did not activate Smad, but significantly activated Akt and ERK. These results demonstrate that the PPE activates PI3K/Akt and MAPK/ERK signals via TGF-β receptors, which stimulate the synthesis of type I collagen in NHDFs. These results suggest that the PPE could be a novel and effective antiaging material. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b19-00193 |