Studying the Potassium-Induced G‑Quadruplex DNA Folding Process Using Microscale Thermophoresis
Guanine (G) quadruplexes (G4s) can be formed by G-rich sequences when stabilized by the binding of cations (typically K+ or Na+) and play an essential role in replication, recombination, transcription, and telomere maintenance. Understanding of the G4 folding process is crucial for determining their...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2019-09, Vol.58 (38), p.3955-3959 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Guanine (G) quadruplexes (G4s) can be formed by G-rich sequences when stabilized by the binding of cations (typically K+ or Na+) and play an essential role in replication, recombination, transcription, and telomere maintenance. Understanding of the G4 folding process is crucial for determining their cellular functions. However, G4–K+ interactions and folding pathways are still not well understood. By using human telomeric G4 (hTG4) as an example, two binding states corresponding to two K+ cations binding to hTG4 were distinguished clearly and fitted precisely. The basic binding parameters during G4–K+ interactions were measured and calculated by taking advantage of microscale thermophoresis (MST), which monitors the changes in charge and size at the same time. The G-hairpin and G-triplex have been suggested as intermediates during G4 folding and unfolding. We further analyzed the equilibrium dissociation constants of 10 possible folding intermediates using MST; thus, the energetically favorable folding/unfolding pathways were proposed. The results might not only shed new light on G4–K+ interactions and G4 folding pathways but also provide an example for experimentally studying DNA–ion interactions. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.9b00447 |