The mechanism of the interaction of α-crystallin and UV-damaged βL-crystallin
α-Crystallin maintains the transparency of the lens by preventing the aggregation of damaged proteins. The aim of our work was to study the chaperone-like activity of native α-crystallin in near physiological conditions (temperature, ionic power, pH) using UV-damaged βL-crystallin as the target prot...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2019-11, Vol.140, p.736-748 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | α-Crystallin maintains the transparency of the lens by preventing the aggregation of damaged proteins. The aim of our work was to study the chaperone-like activity of native α-crystallin in near physiological conditions (temperature, ionic power, pH) using UV-damaged βL-crystallin as the target protein. α-Crystallin in concentration depended manner inhibits the aggregation of UV-damaged βL-crystallin. DSC investigation has shown that refolding of denatured UV-damaged βL-crystallin was not observed under incubation with α-crystallin. α-Crystallin and UV-damaged βL-crystallin form dynamic complexes with masses from 75 to several thousand kDa. The content of UV-damaged βL-crystallin in such complexes increases with the mass of the complex. Complexes containing >10% of UV-damaged βL-crystallin are prone to precipitation whereas those containing |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2019.08.178 |