Radiomics features on non-contrast computed tomography predict early enlargement of spontaneous intracerebral hemorrhage
Highlights•To explore value of radiomics features on NCCT in early enlargement of SICH. •A total of 1227 texture features of each cerebral hematoma were obtained. •Linear Support Vector Classifier showed the highest accuracy. •Radiomics features on NCCT showed good performance in predicting HE of SI...
Gespeichert in:
Veröffentlicht in: | Clinical neurology and neurosurgery 2019-10, Vol.185, p.105491-105491, Article 105491 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights•To explore value of radiomics features on NCCT in early enlargement of SICH. •A total of 1227 texture features of each cerebral hematoma were obtained. •Linear Support Vector Classifier showed the highest accuracy. •Radiomics features on NCCT showed good performance in predicting HE of SICH. |
---|---|
ISSN: | 0303-8467 1872-6968 |
DOI: | 10.1016/j.clineuro.2019.105491 |