Role of Osmotic Pressure for the Formation of Sub-micrometer-Sized, Hollow Polystyrene Particles by Heat Treatment in Aqueous Dispersed Systems

In a previous article, it was reported that a rather amount of sulfate end-groups as initiator fragment were buried in the inside of polystyrene (PS) particles, which were synthesized by emulsion polymerization with potassium persulfate initiator and nonionic emulsifier and operated to absorb water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-09, Vol.35 (37), p.12150-12157
Hauptverfasser: Shi, Hao, Huang, Chujuan, Liu, Xiang, Okubo, Masayoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous article, it was reported that a rather amount of sulfate end-groups as initiator fragment were buried in the inside of polystyrene (PS) particles, which were synthesized by emulsion polymerization with potassium persulfate initiator and nonionic emulsifier and operated to absorb water from the aqueous medium, resulting in hollow particles, when the PS emulsion was treated at higher temperature than the glass transition temperature of PS. In this article, it was clarified that the water absorption is based on the osmotic pressure between the outside (aqueous medium) and inside of the PS particles due to the buried sulfate end-groups.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.9b01952