The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers

[Display omitted] In nanopharmaceutics, a robust manipulation of the preparation process and an accurate prediction of the final product size are very important for developing novel nano drug delivery systems. In the present study, for the first time, a process parameter, i.e. the length of the stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2019-10, Vol.569, p.118634-118634, Article 118634
Hauptverfasser: Yang, Yaoyao, Zhu, Tianhao, Liu, ZhePeng, Luo, Minyi, Yu, Deng-Guang, Annie Bligh, S.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In nanopharmaceutics, a robust manipulation of the preparation process and an accurate prediction of the final product size are very important for developing novel nano drug delivery systems. In the present study, for the first time, a process parameter, i.e. the length of the straight fluid jet, L, is correlated with an experimental parameter, i.e. fluid flow rate, F; a nanofiber property, i.e. diameter, D; and the corresponding drug-sustained release profile. Using a mixed solution consisting of 15% (w/v) polyacrylonitrile and 3% (w/v) ketoprofen in acetone and N,N-dimethylformamide (2:8, v:v) as a spinnable working fluid, a series of medicated nanofibers were prepared under variable F and were characterized. The analysis results disclosed the quantitative relationships among different types of parameters. The process parameter L exhibited a better linear relationship with the nanofibers’ diameter (D) than the processing parameter F. These results give a hint that process parameters can be exploited as useful tools for accurately predicting and tailoring the resultant nanofibers’ D, and in turn their functional performances. The strategy proposed here presents a new approach to investigate the electrohydrodynamic process and manipulate the functions of nanoproducts through process-property-performance relationships.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2019.118634