Optimal Sampling Frequency for Wearable Sensor Data in Arthroplasty Outcomes Research. A Prospective Observational Cohort Trial

Wearable sensors can track patient activity after surgery. The optimal data sampling frequency to identify an association between patient-reported outcome measures (PROMs) and sensor data is unknown. Most commercial grade sensors report 24-hour average data. We hypothesize that increasing the freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of arthroplasty 2019-10, Vol.34 (10), p.2248-2252
Hauptverfasser: Shah, Romil F., Zaid, Musa B., Bendich, Ilya, Hwang, Kevin M., Patterson, Joseph T., Bini, Stefano A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable sensors can track patient activity after surgery. The optimal data sampling frequency to identify an association between patient-reported outcome measures (PROMs) and sensor data is unknown. Most commercial grade sensors report 24-hour average data. We hypothesize that increasing the frequency of data collection may improve the correlation with PROM data. Twenty-two total joint arthroplasty (TJA) patients were prospectively recruited and provided wearable sensors. Second-by-second (Raw) and 24-hour average data (24Hr) were collected on 7 gait metrics on the 1st, 7th, 14th, 21st, and 42nd days postoperatively. The average for each metric as well as the slope of a linear regression for 24Hr data (24HrLR) was calculated. The R2 associations were calculated using machine learning algorithms against individual PROM results at 6 weeks. The resulting R2 values were defined having a mild, moderate, or strong fit (R2 ≥ 0.2, ≥0.3, and ≥0.6, respectively) with PROM results. The difference in frequency of fit was analyzed with the McNemar’s test. The frequency of at least a mild fit (R2 ≥ 0.2) for any data point at any time frame relative to either of the PROMs measured was higher for Raw data (42%) than 24Hr data (32%; P = .041). There was no difference in frequency of fit for 24hrLR data (32%) and 24Hr data values (32%; P > .05). Longer data collection improved frequency of fit. In this prospective trial, increasing sampling frequency above the standard 24Hr average provided by consumer grade activity sensors improves the ability of machine learning algorithms to predict 6-week PROMs in our total joint arthroplasty cohort.
ISSN:0883-5403
1532-8406
DOI:10.1016/j.arth.2019.08.001