A Multi-Omics Extraction Method for the In-Depth Analysis of Synchronized Cultures of the Green Alga Chlamydomonas reinhardtii
Microalgae have been the focus of research for their applications in the production of high value compounds, food and fuel. Moreover, they are valuable photosynthetic models facilitating the understanding of the basic cellular processes. System wide studies enable comprehensive and in-depth understa...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2019-08 (150) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microalgae have been the focus of research for their applications in the production of high value compounds, food and fuel. Moreover, they are valuable photosynthetic models facilitating the understanding of the basic cellular processes. System wide studies enable comprehensive and in-depth understanding of molecular functions of the organisms. However, multiple independent samples and protocols are required for proteomics, lipidomics and metabolomics studies introducing higher error and variability. A robust high throughput extraction method for the simultaneous extraction of chlorophyll, lipids, metabolites, proteins and starch from a single sample of the green alga Chlamydomonas reinhardtii is presented here. The illustrated experimental setup is for Chlamydomonas cultures synchronized using 12 h/12 h light/dark conditions. Samples were collected over a 24 h cell cycle to demonstrate that the metabolites, lipids and starch data obtained using various analytical platforms are well conformed. Furthermore, protein samples collected using the same extraction protocol were used to conduct detailed proteomics analysis to evaluate their quality and reproducibility. Based on the data, it can be inferred that the illustrated method provides a robust and reproducible approach to advance understanding of various biochemical pathways and their functions with greater confidence for both basic and applied research. |
---|---|
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/59547 |