Synthesis of chemically modified BisGMA analog with low viscosity and potential physical and biological properties for dental resin composite

The currently available commercial dental resin composites have limitations in use owing to the high viscosity and water sorption of Bisphenol A glycidyl methacrylate (BisGMA). The objective of this study was to obtain a BisGMA analog with reduced viscosity and hydrophilicity for potential use as an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2019-11, Vol.35 (11), p.1532-1544
Hauptverfasser: Al-Odayni, Abdel-Basit, Alfotawi, Randa, Khan, Rawaiz, Sharaf Saeed, Waseem, Al-Kahtani, Abdullah, Aouak, Taieb, Alrahlah, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The currently available commercial dental resin composites have limitations in use owing to the high viscosity and water sorption of Bisphenol A glycidyl methacrylate (BisGMA). The objective of this study was to obtain a BisGMA analog with reduced viscosity and hydrophilicity for potential use as an alternative to BisGMA in dental resin composites. The targeted chlorinated BisGMA (Cl-BisGMA) monomer was synthesized via the Appel reaction. The structural modification was confirmed via 1H- and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and mass spectrometry. Five resin mixtures (70:30wt.%: F1=BisGMA/TEGDMA; F2=Cl-BisGMA/TEGDMA; F3=Cl-BisGMA only; F4=Cl-BisGMA/BisGMA; F5 contained 15% TEGDMA with equal amounts of BisGMA and Cl-BisGMA) were prepared. The viscosity, degree of double-bond conversion (DC), water sorption (WSP), and solubility (WSL) were tested. Cell viability and live/dead assays, as well as cell attachment and morphology assessments, were applied for cytotoxicity evaluation. Cl-BisGMA was successfully synthesized with the viscosity reduced to 7.22 (Pas) compared to BisGMA (909.93,Pas). Interestingly, the DC of the F2 resin was the highest (70.6%). By the addition of equivalence concentration of Cl-BisGMA instead of BisGMA, the WSP was decreased from 2.95% (F1) to 0.41% (F2) with no significant change in WSL. However, the WSL increased with high Cl-BisGMA content. Biological tests revealed that all the resins were biocompatible during CL1 incubation. The experimental resins based on Cl-BisGMA exhibited improved properties compared with the control samples, e.g., biocompatibility and lower viscosity, indicating that Cl-BisGMA can be considered as a potential monomer for application in dental resin composites.
ISSN:0109-5641
1879-0097
DOI:10.1016/j.dental.2019.07.013