Short Photoluminescence Lifetimes in Vacuum-Deposited CH3NH3PbI3 Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers

It is widely accepted that a long photoluminescence (PL) lifetime in metal halide perovskite films is a crucial and favorable factor, as it ensures a large charge diffusion length leading to a high power conversion efficiency (PCE) in solar cells. It has been recently found that vacuum-evaporated CH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-09, Vol.10 (17), p.5167-5172
Hauptverfasser: Chirvony, Vladimir S, Sekerbayev, Kairolla S, Pérez-del-Rey, Daniel, Martínez-Pastor, Juan P, Palazon, Francisco, Boix, Pablo P, Taurbayev, Toktar I, Sessolo, Michele, Bolink, Henk J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is widely accepted that a long photoluminescence (PL) lifetime in metal halide perovskite films is a crucial and favorable factor, as it ensures a large charge diffusion length leading to a high power conversion efficiency (PCE) in solar cells. It has been recently found that vacuum-evaporated CH3NH3PbI3 (eMAPI) films show very short PL lifetimes of several nanoseconds. The corresponding solar cells, however, have high photovoltage (>1.1 V) and PCEs (up to 20%). We rationalize this apparent contradiction and show that eMAPI films are characterized by a very high diffusion coefficient D, estimated from modeling the PL kinetics to exceed 1 cm2/s. Such high D values are favorable for long diffusion length as well as fast transport of carriers to film surfaces, where they recombine nonradiatively with surface recombination velocity S ∼ 104 cm/s. Possible physical origins leading to the high D values are also discussed.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b02329