Elastic titin properties and protein quality control in the aging heart
Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac pro...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular cell research 2020-03, Vol.1867 (3), p.118532-118532, Article 118532 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover.
We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17–50 years) and aged hearts (51–73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.
•Aging affects the phosphorylation status of elastic titin I-band domains in mouse and human heart•Aging does not affect cardiac titin-based cardiomyocyte passive stiffness•Aging impairs protease activity as an indicator of cardiomyocyte protein turnover, which may diminish the adaptive capacity of aged myocardium to pathological conditions |
---|---|
ISSN: | 0167-4889 1879-2596 |
DOI: | 10.1016/j.bbamcr.2019.118532 |