Cis–Trans Interconversion in Ruthenium(II) Bipyridine Complexes

Most studies of ruthenium polypyridine complexes are devoted to their cis isomers. The fact that cis isomers are thermally more stable and thus easier to synthesize has prevented researchers from investigating the properties and applications of trans complexes. We present a study of thermal and phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2019-09, Vol.58 (17), p.11606-11613
Hauptverfasser: Rojas Pérez, Yeraldith, Slep, Leonardo D, Etchenique, Roberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most studies of ruthenium polypyridine complexes are devoted to their cis isomers. The fact that cis isomers are thermally more stable and thus easier to synthesize has prevented researchers from investigating the properties and applications of trans complexes. We present a study of thermal and photochemical cis–trans interconversion of the key complex [Ru­(bpy)2(PMe3)­(H2O)]2+ (bpy = 2,2′-bipyridine, PMe3 = trimethylphosphine), which results in specific synthetic applications of the trans species, potentially useful as a platform for designing highly efficient visible light activated caged compounds. We show, as a proof of concept, some examples of trans complexes bearing N-donor and P-donor ligands and their comparison with the cis isomers.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.9b01485