Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting

The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2019-09, Vol.8 (18), p.e1900352-n/a
Hauptverfasser: Haryadi, Bernard Manuel, Hafner, Daniel, Amin, Ihsan, Schubel, Rene, Jordan, Rainer, Winter, Gerhard, Engert, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological‐related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film‐stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg) or melting (Tm)], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface‐free energy (SFE) > ≈55 mN m−1, material–water interfacial tension 1 m2 g−1), and in possession of low bulk liquefaction temperature (
ISSN:2192-2640
2192-2659
DOI:10.1002/adhm.201900352