Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods
The strong light–matter interactions between dyes and plasmonic nanoantennas enable the study of fundamental molecular-optical processes. Here, we overcome conventional limitations with high-throughput single-molecule polarization-resolved microscopy to measure dye emission polarization modification...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2019-09, Vol.10 (17), p.5047-5054 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The strong light–matter interactions between dyes and plasmonic nanoantennas enable the study of fundamental molecular-optical processes. Here, we overcome conventional limitations with high-throughput single-molecule polarization-resolved microscopy to measure dye emission polarization modifications upon near-field coupling to a gold nanorod. We determine that the emission polarization distribution is not only rotated toward the nanorod’s dominant localized surface plasmon mode as expected, but it is also unintuitively broadened. With a reduced-order analytical model, we elucidate how this distribution broadening depends upon both far-field interference and off-resonant coupling between the molecular dipole and the nanorod transverse plasmon mode. Experiments and modeling reveal that a nearby plasmonic nanoantenna affects dye emission polarization through a multicolor process, even when the orthogonal plasmon modes are separated by approximately 3 times the dye emission line width. Beyond advancing our understanding of plasmon-coupled emission modifications, this work promises to improve high-sensitivity single-molecule fluorescence imaging, biosensing, and spectral engineering. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.9b02270 |