Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes

Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mycorrhiza 2019-10, Vol.29 (5), p.459-473
Hauptverfasser: Salloum, María Soraya, Insani, Marina, Monteoliva, Mariela Inés, Menduni, María Florencia, Silvente, Sonia, Carrari, Fernando, Luna, Celina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.
ISSN:0940-6360
1432-1890
DOI:10.1007/s00572-019-00909-y