Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP5 Anode

In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP5) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-09, Vol.11 (36), p.32815-32825
Hauptverfasser: Haghighat-Shishavan, Safa, Nazarian-Samani, Masoud, Nazarian-Samani, Mahboobeh, Roh, Ha-Kyung, Chung, Kyung-Yoon, Oh, Si-Hyoung, Cho, Byung-Won, Kashani-Bozorg, Seyed Farshid, Kim, Kwang-Bum
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we synthesize two layered and amorphous structures of germanium phosphide (GeP5) and compare their electrochemical performances to better understand the role of layered, crystalline structures and their ability to control large volume expansions. We compare the results obtained with those of previous, conventional viewpoints addressing the effectiveness of amorphous phases in traditional anodes (Si, Ge, and Sn) to hinder electrode pulverization. By means of both comprehensive experimental characterizations and density functional theory calculations, we demonstrate that layered, crystalline GeP5 in a hybrid structure with multiwalled carbon nanotubes exhibits exceptionally good transport of electrons and electrolyte ions and tolerance to extensive volume changes and provides abundant reaction sites relative to an amorphous structure, resulting in a superior solid-electrolyte interphase layer and unprecedented initial Coulombic efficiencies in both Li-ion and Na-ion batteries. Moreover, the hybrid delivers excellent rate-capability (symmetric and asymmetric) performance and remarkable reversible discharge capacities, even at high current rates, realizing ultradurable cycles in both applications. The findings of this investigation are expected to offer insights into the design and application of layered materials in various devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b05900