Myo-inositol alters 13C-labeled fatty acid metabolism in human placental explants
We postulate that myo-inositol, a proposed intervention for gestational diabetes, affects transplacental lipid supply to the fetus. We investigated the effect of myo-inositol on fatty acid processing in human placental explants from uncomplicated pregnancies. Explants were incubated with 13C-labeled...
Gespeichert in:
Veröffentlicht in: | Journal of endocrinology 2019-10, Vol.243 (1), p.73-84 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We postulate that myo-inositol, a proposed intervention for gestational diabetes, affects transplacental lipid supply to the fetus. We investigated the effect of myo-inositol on fatty acid processing in human placental explants from uncomplicated pregnancies. Explants were incubated with 13C-labeled palmitic acid, 13C-oleic acid and 13C-docosahexaenoic acid across a range of myo-inositol concentrations for 24 h and 48 h. The incorporation of labeled fatty acids into individual lipids was quantified by liquid chromatography mass spectrometry. At 24 h, myo-inositol increased the amount of 13C-palmitic acid and 13C-oleic-acid labeled lipids (median fold change relative to control = 1). Significant effects were seen with 30 µM myo-inositol (physiological) for 13C-palmitic acid-lysophosphatidylcholines (1.26) and 13C-palmitic acid-phosphatidylethanolamines (1.17). At 48 h, myo-inositol addition increased 13C-oleic-acid-lipids but decreased 13C-palmitic acid and 13C-docosahexaenoic-acid lipids. Significant effects were seen with 30 µM myo-inositol for 13C-oleic-acid-phosphatidylcholines (1.25), 13C-oleic-acid-phosphatidylethanolamines (1.37) and 13C-oleic-acid-triacylglycerols (1.32) and with 100 µM myo-inositol for 13C-docosahexaenoic-acid-triacylglycerols (0.78). Lipids labeled with the same 13C-fatty acid showed similar responses when tested at the same time point, suggesting myo-inositol alters upstream processes such as fatty acid uptake or activation. Myo-inositol supplementation may alter placental lipid physiology with unknown clinical consequences. |
---|---|
ISSN: | 0022-0795 1479-6805 |
DOI: | 10.1530/JOE-19-0267 |