The influence of lignin migration and relocation during steam pretreatment on the enzymatic hydrolysis of softwood and corn stover biomass substrates

To be effective, steam pretreatment is typically carried out at temperatures/pressures above the glass transition point (Tg) of biomass lignin so that it can partly fluidize and relocate. The relocation of Douglas‐fir and corn stover derived lignin was compared with the expectation that, with the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2019-11, Vol.116 (11), p.2864-2873
Hauptverfasser: Takada, Masatsugu, Chandra, Richard P., Saddler, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To be effective, steam pretreatment is typically carried out at temperatures/pressures above the glass transition point (Tg) of biomass lignin so that it can partly fluidize and relocate. The relocation of Douglas‐fir and corn stover derived lignin was compared with the expectation that, with the corn stover lignin's lower hydrophobicity and molecular weight, it would be more readily fluidized. It was apparent that the Tg of lignin decreased as the moisture increased, with the easier access of steam to the corn stover lignin promoting its plasticization. Although the softwood lignin was more recalcitrant, when it was incorporated onto filter paper, it too could be plasticized, with its relocation enhancing enzymatic hydrolysis. When lignin recondensation was minimized, the increased hydrophobicity suppressed lignin relocation. It was apparent that differences in the accessibility of the lignin present in Douglas‐fir and corn stover to steam significantly impacted lignin fluidization, relocation, and subsequent cellulose hydrolysis. To be effective, steam pretreatment is typically carried out at temperatures/pressures above the glass transition point (Tg) of biomass lignin so that it can partly fluidize and relocate. The relocation of Douglas‐fir and corn stover derived lignin was compared by lignin structural analysis and the use of model compounds. It was apparent that differences in the accessibility of the lignin present in Douglas‐fir and corn stover to steam significantly impacted lignin fluidization, relocation and subsequent cellulose hydrolysis.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.27137